Cite this article as:

Volodymyr Shatokha, Modeling of the effect of hydrogen injection on blast furnace operation and carbon dioxide emissions, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp.1851-1861. https://dx.doi.org/10.1007/s12613-022-2474-8
Volodymyr Shatokha, Modeling of the effect of hydrogen injection on blast furnace operation and carbon dioxide emissions, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp.1851-1861. https://dx.doi.org/10.1007/s12613-022-2474-8
引用本文 PDF XML SpringerLink

模拟喷吹氢气对高炉运行和二氧化碳排放的影响

摘要: 本文采用一维稳态区域模型模拟了氢气注入对高炉运行和二氧化碳排放的影响。在高炉垂直温度模式模拟的基础上,以热储备区为重点,评估了最大注氢速率。本研究还检查了鼓风温度氧气浓度对焦炭置换率、生产率、氢气利用效率和二氧化碳减排的影响。在鼓风温度为1200°C,富氧量为2vol%和12vol%时,最大氢气注入速率分别为每吨铁水(HM)注入19.0和 28.3千克的H2。结果表明,焦炭替代率为每千克H2 3到4 千克的焦炭,直接CO2排放减少10.2%到17.8%,根据氧富集水平的不同,生产率最高可提高13.7%。提高鼓风温度进一步减少了二氧化碳的直接排放。氢气利用度达到最大值0.52–0.54 H2O/(H2O + H2)。氢气注入的脱碳潜力估计在每吨H2 9.4吨CO2到9.7吨CO2之间。为了经济可行性,注氢需要在低成本制氢方面取得革命性进展,除非技术变革是由碳排放成本推动的。氢气注入可能会对滚道的径向温度模式产生不利影响,这可以通过采用适当的注氢技术来解决。

 

Modeling of the effect of hydrogen injection on blast furnace operation and carbon dioxide emissions

Abstract: The effect of hydrogen injection on blast furnace operation and carbon dioxide emissions was simulated using a 1D steady-state zonal model. The maximum hydrogen injection rate was evaluated on the basis of the simulation of the vertical temperature pattern in the blast furnace with a focus on the thermal reserve zone. The effects of blast temperature and oxygen enrichment were also examined to estimate coke replacement ratio, productivity, hydrogen utilization efficiency, and carbon dioxide emission reduction. For blast temperature of 1200°C, the maximum hydrogen injection rate was 19.0 and 28.3 kg of H2/t of hot metal (HM) for oxygen enrichment of 2vol% and 12vol%, respectively. Results showed a coke replacement ratio of 3–4 kg of coke/kg of H2, direct CO2 emission reduction of 10.2%–17.8%, and increased productivity by up to 13.7% depending on oxygen enrichment level. Increasing blast temperature further reduced the direct CO2 emissions. Hydrogen utilization degree reached the maximum of 0.52–0.54 H2O/(H2O + H2). The decarbonization potential of hydrogen injection was estimated in the range from 9.4 t of CO2/t of H2 to 9.7 t of CO2/t of H2. For economic feasibility, hydrogen injection requires revolutionary progress in terms of low-cost H2 generation unless the technological change is motivated by the carbon emission cost. Hydrogen injection may unfavorably affect the radial temperature pattern of the raceway, which could be addressed by adopting appropriate injection techniques.

 

/

返回文章
返回