留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 3
Mar.  2023

图(8)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  829
  • HTML全文浏览量:  431
  • PDF下载量:  53
  • 被引次数: 0
Luo Kong, Sihan Luo, Shuyu Zhang, Guiqin Zhang, and Yi Liang, Ultralight pyrolytic carbon foam reinforced with amorphous carbon nanotubes for broadband electromagnetic absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 570-580. https://doi.org/10.1007/s12613-022-2476-6
Cite this article as:
Luo Kong, Sihan Luo, Shuyu Zhang, Guiqin Zhang, and Yi Liang, Ultralight pyrolytic carbon foam reinforced with amorphous carbon nanotubes for broadband electromagnetic absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 570-580. https://doi.org/10.1007/s12613-022-2476-6
引用本文 PDF XML SpringerLink
研究论文

非晶态CNTs修饰PyC超轻宽频吸波材料

  • 通讯作者:

    孔硌    E-mail: kongluo@sina.com

文章亮点

  • (1) 构筑自支撑三维超轻CNTs/PyC泡沫,研究了制备工艺对复合材料微结构的影响规律
  • (2) 深入研究CNTs/PyC泡沫的极化和电导损耗机制,实现对材料电磁参数的精确调控
  • (3) 探索了X波段超轻、宽频强吸波材料的微观结构设计思路
  • 对于吸波材料来说,特定频率下材料对电磁波的吸收值不断突破,但提高整个波段吸收性能仍是挑战。本文采用模板法合成了三维多孔热解碳(PyC)泡沫基体,在其表面原位生长非晶态碳纳米管(CNTs),获得密度为22.0 mg·cm−3的超轻CNTs/PyC泡沫。原位生长的非晶CNTs在基体内部分布均匀,获得丰富的界面和适中的电导率,可满足阻抗匹配要求,并且通过调控催化生长时间增强了复合材料的界面极化和电导损耗。当电磁波进入CNTs/PyC泡沫材料的内部孔道时,界面极化损耗、电导损耗和多重反射机制可协同衰减电磁波能量。获得的CNTs/PyC泡沫对电磁波的最小反射率为−29.6 dB,在整个X波段的反射率均低于−13.3 dB。研究结果为X波段内超轻、宽频强吸波材料的研究提供了思路。
  • Research Article

    Ultralight pyrolytic carbon foam reinforced with amorphous carbon nanotubes for broadband electromagnetic absorption

    + Author Affiliations
    • For electromagnetic wave-absorbing materials, maximizing absorption at a specific frequency has been constantly achieved, but enhancing the absorption properties in the entire band remains a challenge. In this work, a 3D porous pyrolytic carbon (PyC) foam matrix was synthesized by a template method. Amorphous carbon nanotubes (CNTs) were then in-situ grown on the matrix surface to obtain ultralight CNTs/PyC foam. These in-situ grown amorphous CNTs were distributed uniformly and controlled by the catalytic growth time and can enhance the interface polarization and conduction loss of composites. When the electromagnetic wave enters the internal holes, the electromagnetic energy can be completely attenuated under the combined action of polarization, conductivity loss, and multiple reflections. The ultralight CNTs/PyC foam had a density of 22.0 mg·cm−3 and a reflection coefficient lower than −13.3 dB in the whole X-band (8.2–12.4 GHz), which is better than the conventional standard of effective absorption bandwidth (≤−10 dB). The results provide ideas for researching ultralight and strong electromagnetic wave absorbing materials in the X-band.
    • loading
    • [1]
      Q. Song, F. Ye, L. Kong, et al., Graphene and MXene nanomaterials: Toward high-performance electromagnetic wave absorption in gigahertz band range, Adv. Funct. Mater., 30(2020), No. 31, art. No. 2000475. doi: 10.1002/adfm.202000475
      [2]
      C. Wang, V. Murugadoss, J. Kong, et al., Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding, Carbon, 140(2018), p. 696. doi: 10.1016/j.carbon.2018.09.006
      [3]
      M. Qin, L.M. Zhang, X.R. Zhao, and H.J. Wu, Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber, Adv. Funct. Mater., 31(2021), No. 30, art. No. 2103436. doi: 10.1002/adfm.202103436
      [4]
      M.S. Cao, X.X. Wang, M. Zhang, et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials, Adv. Funct. Mater., 29(2019), No. 25, art. No. 1807398. doi: 10.1002/adfm.201807398
      [5]
      G.Z. Wang, Z. Gao, S.W. Tang, et al., Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition, ACS Nano, 6(2012), No. 12, p. 11009. doi: 10.1021/nn304630h
      [6]
      Q.H. Liu, Q. Cao, H. Bi, et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption, Adv. Mater., 28(2016), No. 3, p. 486. doi: 10.1002/adma.201503149
      [7]
      X.L. Cao, Z.R. Jia, D.Q. Hu, and G.L. Wu, Synergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorption, Adv. Compos. Hybrid Mater., 5(2022), No. 2, p. 1030. doi: 10.1007/s42114-021-00415-w
      [8]
      J.W. Liu, R.C. Che, H.J. Chen, et al., Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells, Small, 8(2012), No. 8, p. 1214. doi: 10.1002/smll.201102245
      [9]
      N. Rezlescu, L. Rezlescu, P.D. Popa, and E. Rezlescu, Influence of additives on the properties of a Ni–Zn ferrite with low Curie point, J. Magn. Magn. Mater., 215-216(2000), p. 194. doi: 10.1016/S0304-8853(00)00114-1
      [10]
      X. Li, M.H. Li, X.K. Lu, et al., A sheath-core shaped ZrO2–SiC/SiO2 fiber felt with continuously distributed SiC for broad-band electromagnetic absorption, Chem. Eng. J., 419(2021), art. No. 129414. doi: 10.1016/j.cej.2021.129414
      [11]
      H.L. Lv, Y.H. Guo, Z.H. Yang, et al., A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials, J. Mater. Chem. C, 5(2017), No. 3, p. 491. doi: 10.1039/C6TC03026B
      [12]
      L. Kong, J. Qi, M.H. Li, et al., Electromagnetic wave absorption properties of Ti3C2Tx nanosheets modified with in situ growth carbon nanotubes, Carbon, 183(2021), p. 322. doi: 10.1016/j.carbon.2021.07.018
      [13]
      M.S. Cao, C. Han, X.X. Wang, et al., Graphene nanohybrids: Excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves, J. Mater. Chem. C, 6(2018), No. 17, p. 4586. doi: 10.1039/C7TC05869A
      [14]
      M.H. Li, X.M. Fan, H.L. Xu, et al., Controllable synthesis of mesoporous carbon hollow microsphere twined by CNT for enhanced microwave absorption performance, J. Mater. Sci. Technol., 59(2020), p. 164. doi: 10.1016/j.jmst.2020.04.048
      [15]
      Y.F. Zhan, L. Xia, H. Yang, et al., Tunable electromagnetic wave absorbing properties of carbon nanotubes/carbon fiber composites synthesized directly and rapidly via an innovative induction heating technique, Carbon, 175(2021), p. 101. doi: 10.1016/j.carbon.2020.12.080
      [16]
      L. Kong, X.W. Yin, X.Y. Yuan, et al., Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites, Carbon, 73(2014), p. 185. doi: 10.1016/j.carbon.2014.02.054
      [17]
      N.N. Wu, C. Liu, D.M. Xu, et al., Enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C composite flowers, ACS Sustainable Chem. Eng., 6(2018), No. 9, p. 12471. doi: 10.1021/acssuschemeng.8b03097
      [18]
      P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You, and R.C. Che, Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption, Adv. Funct. Mater., 31(2021), No. 27, art. No. 2102812. doi: 10.1002/adfm.202102812
      [19]
      X.M. Huang, X.H. Liu, Z.R. Jia, B.B. Wang, X.M. Wu, and G.L. Wu, Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance, Adv. Compos. Hybrid Mater., 4(2021), No. 4, p. 1398. doi: 10.1007/s42114-021-00304-2
      [20]
      L. Kong, X.W. Yin, H.L. Xu, et al., Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite, Carbon, 145(2019), p. 61. doi: 10.1016/j.carbon.2019.01.009
      [21]
      Z.P. Chen, W.C. Ren, L.B. Gao, B.L. Liu, S.F. Pei, and H.M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition, Nat. Mater., 10(2011), No. 6, p. 424. doi: 10.1038/nmat3001
      [22]
      L. Kong, X.W. Yin, M.K. Han, et al., Macroscopic bioinspired graphene sponge modified with in situ grown carbon nanowires and its electromagnetic properties, Carbon, 111(2017), p. 94. doi: 10.1016/j.carbon.2016.09.066
      [23]
      C. Yan, M.B. Pu, J. Luo, et al., Coherent perfect absorption of electromagnetic wave in subwavelength structures, Opt. Laser Technol., 101(2018), p. 499. doi: 10.1016/j.optlastec.2017.12.004
      [24]
      C.Q. Song, X.W. Yin, M.K. Han, et al., Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties, Carbon, 116(2017), p. 50. doi: 10.1016/j.carbon.2017.01.077
      [25]
      T.Q. Hou, Z.R. Jia, Y.H. Dong, X.H. Liu, and G.L. Wu, Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption, Chem. Eng. J., 431(2022), art. No. 133919. doi: 10.1016/j.cej.2021.133919
      [26]
      C. Li, Y.S. Zhou, and H.Y. Wang, Scattering mechanism in a step-modulated subwavelength metal slit: A multi-mode multi-reflection analysis, Eur. Phys. J. D, 66(2012), No. 1, art. No. 9. doi: 10.1140/epjd/e2011-20502-8
      [27]
      Y. Zhang, Y. Huang, T.F. Zhang, et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam, Adv. Mater., 27(2015), No. 12, p. 2049. doi: 10.1002/adma.201405788
      [28]
      H.L. Xu, X.W. Yin, M. Zhu, et al., Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption, ACS Appl. Mater. Interfaces, 9(2017), No. 7, p. 6332. doi: 10.1021/acsami.6b15826
      [29]
      L. Wang, B. Wen, X.Y. Bai, C. Liu, and H.B. Yang, Facile and green approach to the synthesis of zeolitic imidazolate framework nanosheet-derived 2D Co/C composites for a lightweight and highly efficient microwave absorber, J. Colloid Interface Sci., 540(2019), p. 30. doi: 10.1016/j.jcis.2018.12.111
      [30]
      H. Lee, S.M. Dellatore, W.M. Miller, and P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings, Science, 318(2007), No. 5849, p. 426. doi: 10.1126/science.1147241
      [31]
      B.H. Kim, D.H. Lee, J.Y. Kim, et al., Mussel-inspired block copolymer lithography for low surface energy materials of teflon, graphene, and gold, Adv. Mater., 23(2011), No. 47, p. 5618. doi: 10.1002/adma.201103650
      [32]
      G.P. Liu, B. Wang, L. Xu, et al., Paper-derived cobalt and nitrogen co-doped carbon nanotube@porous carbon as a nonprecious metal electrocatalyst for the oxygen reduction reaction, Chin. J. Catal., 39(2018), No. 4, p. 790. doi: 10.1016/S1872-2067(17)62982-6
      [33]
      R. Qiang, Y.C. Du, Y. Wang, et al., Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption, Carbon, 98(2016), p. 599. doi: 10.1016/j.carbon.2015.11.054
      [34]
      M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, and J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites, Carbon, 48(2010), No. 3, p. 788. doi: 10.1016/j.carbon.2009.10.028
      [35]
      Y. Liu, X.W. Yin, L. Kong, et al., Electromagnetic properties of SiO2 reinforced with both multi-wall carbon nanotubes and ZnO particles, Carbon, 64(2013), p. 541. doi: 10.1016/j.carbon.2013.07.039
      [36]
      M.H. Al-Saleh and U. Sundararaj, X-band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites, J. Phys. D: Appl. Phys., 46(2013), No. 3, art. No. 035304. doi: 10.1088/0022-3727/46/3/035304
      [37]
      H.L. Yu, T.S. Wang, B. Wen, et al., Graphene/polyaniline nanorod arrays: Synthesis and excellent electromagnetic absorption properties, J. Mater. Chem., 22(2012), No. 40, p. 21679. doi: 10.1039/c2jm34273a
      [38]
      W. Tian, X.Z. Zhang, Y. Guo, et al., Hybrid silica-carbon bilayers anchoring on FeSiAl surface with bifunctions of enhanced anti-corrosion and microwave absorption, Carbon, 173(2021), p. 185. doi: 10.1016/j.carbon.2020.11.002
      [39]
      X.F. Zhou, Z.R. Jia, A.L. Feng, et al., Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance, Carbon, 152(2019), p. 827. doi: 10.1016/j.carbon.2019.06.080
      [40]
      B. Quan, X.H. Liang, G.B. Ji, et al., Dielectric polarization in electromagnetic wave absorption: Review and perspective, J. Alloys Compd., 728(2017), p. 1065. doi: 10.1016/j.jallcom.2017.09.082
      [41]
      C. Franchini, M. Reticcioli, M. Setvin, and U. Diebold, Polarons in materials, Nat. Rev. Mater., 6(2021), No. 7, p. 560. doi: 10.1038/s41578-021-00289-w
      [42]
      C. Han, M. Zhang, W.Q. Cao, and M.S. Cao, Electrospinning and in situ hierarchical thermal treatment to tailor C–NiCo2O4 nanofibers for tunable microwave absorption, Carbon, 171(2021), p. 953. doi: 10.1016/j.carbon.2020.09.067
      [43]
      E.T. Thostenson and T.W. Chou, Microwave processing: Fundamentals and applications, Compos. A Appl. Sci. Manuf., 30(1999), No. 9, p. 1055. doi: 10.1016/S1359-835X(99)00020-2
      [44]
      L. Liu, P.G. He, K.C. Zhou, and T.F. Chen, Microwave absorption properties of helical carbon nanofibers-coated carbon fibers, AIP Adv., 3(2013), No. 8, art. No. 082112. doi: 10.1063/1.4818495
      [45]
      W.W. Liu, H. Li, Q.P. Zeng, et al., Fabrication of ultralight three-dimensional graphene networks with strong electromagnetic wave absorption properties, J. Mater. Chem. A, 3(2015), No. 7, p. 3739. doi: 10.1039/C4TA06091A
      [46]
      Y.H. Cheng, P. Hu, S.B. Zhou, et al., Achieving tunability of effective electromagnetic wave absorption between the whole X-band and Ku-band via adjusting PPy loading in SiC nanowires/graphene hybrid foam, Carbon, 132(2018), p. 430. doi: 10.1016/j.carbon.2018.02.084
      [47]
      M.S. Cao, J. Yang, W.L. Song, et al., Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption, ACS Appl. Mater. Interfaces, 4(2012), No. 12, p. 6949. doi: 10.1021/am3021069
      [48]
      N. Yang, Z.X. Luo, G.R. Zhu, et al., Ultralight three-dimensional hierarchical cobalt nanocrystals/N-doped CNTs/carbon sponge composites with a hollow skeleton toward superior microwave absorption, ACS Appl. Mater. Interfaces, 11(2019), No. 39, p. 35987. doi: 10.1021/acsami.9b11101
      [49]
      C.H. Wang, Y.J. Ding, Y. Yuan, et al., Graphene aerogel composites derived from recycled cigarette filters for electromagnetic wave absorption, J. Mater. Chem. C, 3(2015), No. 45, p. 11893. doi: 10.1039/C5TC03127C
      [50]
      M.K. Han, X.W. Yin, Z.X. Hou, et al., Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties, ACS Appl. Mater. Interfaces, 9(2017), No. 13, p. 11803. doi: 10.1021/acsami.7b00951
      [51]
      V.K. Singh, A. Shukla, M.K. Patra, et al., Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite, Carbon, 50(2012), No. 6, p. 2202. doi: 10.1016/j.carbon.2012.01.033
      [52]
      J. Feng, Y.C. Zhang, P. Wang, and H.L. Fan, Oblique incidence performance of radar absorbing honeycombs, Composites Part B, 99(2016), p. 465. doi: 10.1016/j.compositesb.2016.06.053
      [53]
      X.L. Ye, Z.F. Chen, M. Li, et al., Reticulated SiC coating reinforced carbon foam with tunable electromagnetic microwave absorption performance, Composites Part B, 178(2019), art. No. 107479. doi: 10.1016/j.compositesb.2019.107479
      [54]
      C.M. Zhang, Y.J. Chen, H. Li, R. Tian, and H.Z. Liu, Facile fabrication of three-dimensional lightweight RGO/PPy nanotube/Fe3O4 aerogel with excellent electromagnetic wave absorption properties, ACS Omega, 3(2018), No. 5, p. 5735. doi: 10.1021/acsomega.8b00414
      [55]
      Y. Wang, J. Yang, Z.F. Chen, and Y.L. Hu, A new flexible and ultralight carbon foam/Ti3C2Tx MXene hybrid for high-performance electromagnetic wave absorption, RSC Adv., 9(2019), No. 70, p. 41038. doi: 10.1039/C9RA09817H
      [56]
      S.S. Xiao, H. Mei, D.Y. Han, K.G. Dassios, and L.F. Cheng, Ultralight lamellar amorphous carbon foam nanostructured by SiC nanowires for tunable electromagnetic wave absorption, Carbon, 122(2017), p. 718. doi: 10.1016/j.carbon.2017.07.023
      [57]
      X. Qiu, L.X. Wang, H.L. Zhu, Y.K. Guan, and Q.T. Zhang, Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon, Nanoscale, 9(2017), No. 22, p. 7408. doi: 10.1039/C7NR02628E
      [58]
      J. Yang, Z.M. Shen, and Z.B. Hao, Microwave characteristics of sandwich composites with mesophase pitch carbon foams as core, Carbon, 42(2004), No. 8-9, p. 1882. doi: 10.1016/j.carbon.2004.03.017
      [59]
      S.K. Singh, M.J. Akhtar, and K.K. Kar, Hierarchical carbon nanotube-coated carbon fiber: Ultra lightweight, thin, and highly efficient, ACS Appl. Mater. Interfaces, 10(2018), No. 29, p. 24816. doi: 10.1021/acsami.8b06673
      [60]
      X.L. Li, X.W. Yin, H.L. Xu, et al., Ultralight MXene-coated, interconnected SiCnws three-dimensional lamellar foams for efficient microwave absorption in the X-band, ACS Appl. Mater. Interfaces, 10(2018), No. 40, p. 34524. doi: 10.1021/acsami.8b13658

    Catalog


    • /

      返回文章
      返回