Cite this article as:

Xianping Luo, Kunzhong He, Yan Zhang, Pengyu He, and Yongbing Zhang, A review of intelligent ore sorting technology and equipment development, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp.1647-1655. https://dx.doi.org/10.1007/s12613-022-2477-5
Xianping Luo, Kunzhong He, Yan Zhang, Pengyu He, and Yongbing Zhang, A review of intelligent ore sorting technology and equipment development, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp.1647-1655. https://dx.doi.org/10.1007/s12613-022-2477-5
引用本文 PDF XML SpringerLink

智能矿石拣选技术及设备的发展综述

摘要: 在世界矿石资源日益贫细杂化、市场竞争日益激烈和环境污染问题严重的背景下,矿业发展受到了强烈制约。智能拣选设备的发展可以提高资源的利用率,提高企业的经济效益,增加入选矿石品位、降低磨矿成本及尾砂生产量。智能拣选设备的长期应用发现影响分选效率的因素主要有矿石信息识别技术、设备分选执行机构、信息处理算法等。这些因素的精确、高速运行是智能拣选设备分选效率的保障。近几年来,智能拣选设备的发展也取得了许多成果。根据矿物的特征信息不同,为了保证设备选别的精确性的同时提高设备分选效率,进而相继研发了颜色分选机、X射线透射分选机(XRT)、双能X射线透射分选机(DE-XRT)、X射线荧光分选机(XRF)以及近红外分选机(NIR)等。随着矿业自动化脚步的不断推进,在线元素快速分析系统将成为未来智能拣选设备发展的必然趋势。激光诱导击穿光谱技术(LIBS)、瞬发γ中子活化分析技术(PGNAA)、在线傅立叶变换红外光谱技术(FTIR)、核磁共振(MR)技术及信息处理算法,如峰面积法、主成分分析法、人工神经网络法、偏最小二乘法(PLS)、蒙特卡洛谱库最小二乘法等的应用和提升,将使智能拣选选矿设备的发展步入一个新的台阶。

 

A review of intelligent ore sorting technology and equipment development

Abstract: Under the background of increasingly scarce ore worldwide and increasingly fierce market competition, developing the mining industry could be strongly restricted. Intelligent ore sorting equipment not only improves ore use and enhances the economic benefits of enterprises but also increases the ore grade and lessens the grinding cost and tailings production. However, long-term research on intelligent ore sorting equipment found that the factors affecting sorting efficiency mainly include ore information identification technology, equipment sorting actuator, and information processing algorithm. The high precision, strong anti-interference capability, and high speed of these factors guarantee the separation efficiency of intelligent ore sorting equipment. Color ore sorter, X-ray ore transmission sorter, dual-energy X-ray transmission ore sorter, X-ray fluorescence ore sorter, and near-infrared ore sorter have been successfully developed in accordance with the different characteristics of minerals while ensuring the accuracy of equipment sorting and improving the equipment sorting efficiency. With the continuous improvement of mine automation level, the application of online element rapid analysis technology with high speed, high precision, and strong anti-interference capability in intelligent ore sorting equipment will become an inevitable trend of equipment development in the future. Laser-induced breakdown spectroscopy, transient γ neutron activation analysis, online Fourier transform infrared spectroscopy, and nuclear magnetic resonance techniques will promote the development of ore sorting equipment. In addition, the improvement and joint application of additional high-speed and high-precision operation algorithms (such as peak area, principal component analysis, artificial neural network, partial least squares, and Monte Carlo library least squares methods) are an essential part of the development of intelligent ore sorting equipment in the future.

 

/

返回文章
返回