留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 10
Oct.  2022

图(10)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  3358
  • HTML全文浏览量:  1380
  • PDF下载量:  197
  • 被引次数: 0
Lei Wang, Peimin Guo, Lingbing Kong,  and Pei Zhao, Industrial application prospects and key issues of the pure-hydrogen reduction process, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp. 1922-1931. https://doi.org/10.1007/s12613-022-2478-4
Cite this article as:
Lei Wang, Peimin Guo, Lingbing Kong,  and Pei Zhao, Industrial application prospects and key issues of the pure-hydrogen reduction process, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp. 1922-1931. https://doi.org/10.1007/s12613-022-2478-4
引用本文 PDF XML SpringerLink
研究论文

纯氢还原工艺的工业应用前景及关键问题

  • 通讯作者:

    郭培民    E-mail: guopm@pku.org.cn

文章亮点

  • (1) 选择、设计了铁矿石纯氢还原反应器和工艺。
  • (2) 计算并优化了纯氢还原工艺工业化应用中的关键技术参数。
  • (3) 分析探讨了纯氢加热器和反应器的材料属性要求及材料选择、开发方向。
  • 为了促进铁矿石纯氢还原工艺的发展,通过理论分析和计算方法,对纯氢还原工艺的基础理论和应用中的关键问题及工业应用前景进行了探讨。根据纯氢还原反应的热力学和动力学讨论结果可知,纯氢还原氧化铁的反应是吸热反应,氢还原的反应速率明显快于碳还原。参考工业化的富氢还原工艺,选择并设计了纯氢还原反应器和工艺,并提出了适当提高还原温度、压力和温度的方法,以加快铁矿石的反应速度,促进氧化铁的还原。对工程应用中的关键技术参数,如氢气消耗量、循环气量和热平衡,进行了理论计算,并提出了优化参数值。对目前各种制氢方法的工艺参数、成本、优缺点的对比结果表明,天然气重整制氢具有良好的发展前景。通过对高温高压氢对耐热钢材料的腐蚀机理和H2S在氢气中对钢的腐蚀机理的探讨,提出了开发新型金属耐温材料、金属涂层材料及控制气体成分的方法,可指导加热器和反应器材料的选择。最后,分析了工程应用中影响氢还原过程平稳运行的关键因素,为纯氢还原过程的工业应用提供了参考。
  • Research Article

    Industrial application prospects and key issues of the pure-hydrogen reduction process

    + Author Affiliations
    • The industrial application prospect and key issues in basic theory and application are discussed by the methods of theoretical analysis and calculation to promote the development of the pure-hydrogen reduction process. According to the discussion of thermodynamics and kinetics of pure-hydrogen reduction reaction, the reduction reaction of iron oxide by pure hydrogen is an endothermic reaction, and the reaction rate of hydrogen reduction is significantly faster than that of carbon reduction. To explore the feasibility of the industrial applications of pure-hydrogen reduction, we design the hydrogen reduction reactor and process with reference to the industrialized hydrogen-rich reduction process and put forward the methods of appropriately increasing the reduction temperature, pressure, and temperature of iron ore into the furnace to accelerate the reaction rate and promote the reduction of iron oxide. The key technical parameters in engineering applications, such as hydrogen consumption, circulating gas volume, and heat balance, are discussed by theoretical calculations, and the optimized parameter values are proposed. The process parameters, cost, advantages, and disadvantages of various current hydrogen production methods are compared, and the results show that hydrogen production by natural gas reforming has a good development prospect. Through the discussion of the corrosion mechanism of high-temperature and high-pressure hydrogen on heat-resistant steel materials and the corrosion mechanism of H2S in the hydrogen gas on steel, the technical ideas of developing new metal temperature-resistant materials, metal coating materials, and controlling gas composition are put forward to provide guidance for the selection of heater and reactor materials. Finally, the key factors affecting the smooth operation of the hydrogen reduction process in engineering applications are analyzed, offering a reference for the industrial application of the pure-hydrogen reduction process.
    • loading
    • [1]
      D. Spreitzer and J. Schenk, Reduction of iron oxides with hydrogen—A review, Steel Res. Int., 90(2019), No. 10, art. No. 1900108. doi: 10.1002/srin.201900108
      [2]
      H. Xu, Z.S. Zou, Y.S. Zhou, Z.Y. Li, and A.B. Yu, Preliminary numerical simulation of shaft furnace process for DRI production, J. Mater. Metall., 8(2009), No. 1, p. 7.
      [3]
      Z.W. Zhao, F.L. Kong, L.G. Tong, S.W. Yin, Y.R. Xie, and L.Wang, Analysis of CO2 emission reduction path and potential of China’s steel industry under the “3060 target”, Iron Steel, 57(2022), No. 2, p. 167.
      [4]
      Z.Y. Xu and B.C. Wu, Simulating study on direct reduction of iron ore by midrex process, Gangtie, 22(1987), No. 12, p. 8.
      [5]
      M.H. Bai and Y.X. Fu, Design method of reduction segment parameters of the gas-based direct reduction shaft furance, J. Iron. Steel Res., 27(2015), No. 9, p. 21.
      [6]
      F. Li, M.S. Chu, J. Tang, and Z.G. Liu, Environmental impact analysis of hydrogen shaft furnace-electric furnace process, China Metall., 31(2021), No. 9, p. 104.
      [7]
      S. Sarkar, R. Bhattacharya, G.G. Roy, and P.K. Sen, Modeling MIDREX based process configurations for energy and emission analysis, Steel Res. Int., 89(2018), No. 2, art. No. 1700248. doi: 10.1002/srin.201700248
      [8]
      X.N. Wang, G.Q. Fu, W. Li, and M.Y. Zhu, Numerical simulation and optimization of flash reduction of iron ore particles with hydrogen-rich gases, Powder Technol., 366(2020), p. 587. doi: 10.1016/j.powtec.2020.02.075
      [9]
      H. Hamadeh, O. Mirgaux, and F. Patisson, Detailed modeling of the direct reduction of iron ore in a shaft furnace, Materials (Basel), 11(2018), No. 10, art. No. 1865.
      [10]
      M.S. Valipour, M.Y. Motamed Hashemi, and Y. Saboohi, Mathematical modeling of the reaction in an iron ore pellet using a mixture of hydrogen, water vapor, carbon monoxide and carbon dioxide: An isothermal study, Adv. Powder Technol., 17(2006), No. 3, p. 277. doi: 10.1163/156855206777213375
      [11]
      M. Kazemi, M.S. Pour, and S.C. Du, Experimental and modeling study on reduction of hematite pellets by hydrogen gas, Metall. Mater. Trans. B, 48(2017), No. 2, p. 1114. doi: 10.1007/s11663-016-0895-3
      [12]
      F. Patisson and O. Mirgaux, Hydrogen ironmaking: How it works, Metals, 10(2020), No. 7, art. No. 922. doi: 10.3390/met10070922
      [13]
      F.M. Mohsenzadeh, H. Payab, M.A. Abdoli, and Z. Abedi, An environmental study on Persian direct reduction (PERED®) technology: Comparing capital cost and energy saving with MIDREX® technology, Ekoloji, 27(2018), No. 106, p. 959.
      [14]
      A. Bonalde, A. Henriquez, and M. Manrique, Kinetic analysis of the iron oxide reduction using hydrogen–carbon monoxide mixtures as reducing agent, ISIJ Int., 45(2005), No. 9, p. 1255. doi: 10.2355/isijinternational.45.1255
      [15]
      J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, and Y.S. Zhou, Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 713. doi: 10.1007/s12613-020-2021-4
      [16]
      A. Abdelrahim, M. Iljana, M. Omran, T. Vuolio, H. Bartusch, and T. Fabritius, Influence of H2–H2O content on the reduction of acid iron ore pellets in a CO–CO2–N2 reducing atmosphere, ISIJ Int., 60(2020), No. 10, p. 2206. doi: 10.2355/isijinternational.ISIJINT-2019-734
      [17]
      B.L. Hou, H.Y. Zhang, H.Z. Li, and Q.S. Zhu, Study on kinetics of iron oxide reduction by hydrogen, Chin. J. Chem. Eng., 20(2012), No. 1, p. 10. doi: 10.1016/S1004-9541(12)60357-7
      [18]
      P. Cavaliere, Direct reduced iron: Most efficient technologies for greenhouse emissions abatement, [in] Clean Ironmaking and Steelmaking Processes, Springer, Cham, 2019, p. 419.
      [19]
      Y. Gordon and S. Kumar, Selection of ironmaking technology: Principles and risks, Trans. Indian Inst. Met., 66(2013), No. 5-6, p. 501. doi: 10.1007/s12666-013-0267-5
      [20]
      X. Jiang, L. Wang, and F.M. Shen, Shaft furnace direct reduction technology—Midrex and energiron, Adv. Mater. Res., 805-806(2013), p. 654. doi: 10.4028/www.scientific.net/AMR.805-806.654
      [21]
      P.M. Guo and P. Zhao, Theory and Technology for Fast Metallurgy at Low Temperature, Metallurgical Industry Press, Beijing, 2020, p. 111.
      [22]
      W.G. Liu, H.B. Zuo, J.S. Wang, Q.G. Xue, B.L. Ren, and F. Yang, The production and application of hydrogen in steel industry, Int. J. Hydrogen. Energy, 46(2021), No. 17, p. 10548. doi: 10.1016/j.ijhydene.2020.12.123
      [23]
      A. Bhaskar, M. Assadi, and H.N. Somehsaraei, Decarbonization of the iron and steel industry with direct reduction of iron ore with green hydrogen, Energies, 13(2020), No. 3, art. No. 758. doi: 10.3390/en13030758
      [24]
      M. Ren, P.T. Lu, X.R. Liu, et al., Decarbonizing China's iron and steel industry from the supply and demand sides for carbon neutrality, Appl. Energy, 298(2021), art. No. 117209. doi: 10.1016/j.apenergy.2021.117209
      [25]
      L. Shao, X.N. Zhang, C.X. Zhao, Y.X. Qu, H. Saxén, and Z.S. Zou, Computational analysis of hydrogen reduction of iron oxide pellets in a shaft furnace process, Renew. Energy, 179(2021), p. 1537. doi: 10.1016/j.renene.2021.07.108
      [26]
      X.L. Wang, Metallurgy of Iron and Steel (Ironmaking), Metallurgical Industry Press, Beijing, 2009, p. 250.
      [27]
      Midrex Technologies Inc., 2020 World Direct Reduction Statistics, Midrex Technologies Inc., Charlotte [2021-10-10]. https://www.midrex.com/wp-content/uploads/Midrex-STATSbookprint-2020.Final_.pdf
      [28]
      X.Q. Zhang, The development trend of and suggestions for China’s hydrogen energy industry, Engineering, 7(2021), No. 6, p. 719. doi: 10.1016/j.eng.2021.04.012
      [29]
      J.H. Niu, Research on the hydrogen production technology, IOP Conf. Ser.: Earth Environ. Sci., 813(2021), No. 1, art. No. 012004. doi: 10.1088/1755-1315/813/1/012004
      [30]
      J. Yamabe, S. Matsuoka, and Y. Murakami, Surface coating with a high resistance to hydrogen entry under high-pressure hydrogen-gas environment, Int. J. Hydrogen Energy, 38(2013), No. 24, p. 10141. doi: 10.1016/j.ijhydene.2013.05.152
      [31]
      J. Yamabe, O. Takakuwa, H. Matsunaga, H. Itoga, and S. Matsuoka, Hydrogen diffusivity and tensile-ductility loss of solution-treated austenitic stainless steels with external and internal hydrogen, Int. J. Hydrogen Energy, 42(2017), No. 18, p. 13289. doi: 10.1016/j.ijhydene.2017.04.055
      [32]
      H.J. Guo. Metallurgical Physical Chemistry, Metallurgical Industry Press, Beijing, 2006, p.315.
      [33]
      Y.J. Liang and Y.C. Che. Handbook of Inorganic Thermodynamic Data, Northeast University Press, Shenyang, 1993, p.151.
      [34]
      D.L. Ye and J.H. Hu. Thermodynamic Data Manual of Practical Inorganic Chemistry, Metallurgical Industry Press, Beijing, 2002, p.569.
      [35]
      R.C. John, A.D. Pelton, A.L. Young, W.T. Thompson, I.G. Wright, and T.M. Besmann, Assessing corrosion in oil refining and petrochemical processing, Mater. Res., 7(2004), No. 1, p. 163. doi: 10.1590/S1516-14392004000100022

    Catalog


    • /

      返回文章
      返回