留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 11
Nov.  2022

图(10)

数据统计

分享

计量
  • 文章访问数:  1652
  • HTML全文浏览量:  580
  • PDF下载量:  64
  • 被引次数: 0
Jiaxin Li, Hao Yuan, Wenjie Zhang, Ruijie Zhu,  and Zhengbo Jiao, Construction of BiVO4/BiOCl@C Z-scheme heterojunction for enhanced photoelectrochemical performance, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 1971-1980. https://doi.org/10.1007/s12613-022-2481-9
Cite this article as:
Jiaxin Li, Hao Yuan, Wenjie Zhang, Ruijie Zhu,  and Zhengbo Jiao, Construction of BiVO4/BiOCl@C Z-scheme heterojunction for enhanced photoelectrochemical performance, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 1971-1980. https://doi.org/10.1007/s12613-022-2481-9
引用本文 PDF XML SpringerLink
研究论文封面文章

构建Z型BiVO4/BiOCl@C异质结提高光电化学性能

  • 通讯作者:

    焦正波    E-mail: jiaozhb@qdu.edu.cn

文章亮点

  • (1)通过简单的固溶体干燥煅烧法制备光催化性能优异的光电阳极。
  • (2)利用空心碳球作为导电介质,加速载流子的迁移速率。
  • (3)构建Z型异质结,减少电子–空穴重组率,提高BiVO4光电催化性能。
  • 利用半导体光催化剂分解水是目前将太阳能转化为化学燃料的有效方法之一。然而,大多数氧化物半导体材料由于可见光利用率较低以及光激发电子-空穴对复合速率高而限制了其实际应用范围。因此,复合光催化剂通过提高电荷转移效率来改善单组分光催化剂的光催化性能。本文旨在开发一种光电催化性能优异的BiVO4基Z型异质结作为光催化分解水体系中的光阳极,以此来提高光电分解水的效率。在可见光照射下对制备的一系列BiVO4基光催化剂进行光电化学性能测试,结果显示Mo,W:BiVO4/BiOCl@C构建的Z型异质结的性能最优异。其光电流密度和入射光子-电子转换效率(IPCE)分别是纯BiVO4的5.4倍和9.0倍。通过自由基捕获实验可知,光电化学性能的提高归因于Z型异质结的构建,从而增强了可见光吸收范围并降低了光生载流子的复合率。这项工作为光电化学(PEC)水裂解的应用提供了一种有效的构造Z型光电极的策略。
  • Research Article

    Construction of BiVO4/BiOCl@C Z-scheme heterojunction for enhanced photoelectrochemical performance

    + Author Affiliations
    • A Z-scheme heterostructure of Mo, W co-doped BiVO4 (Mo,W:BVO/BiOCl@C) was fabricated by a simple solid solution drying and calcination (SSDC) method. The heterostructure was characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), etc. Under visible light irradiation, Mo,W:BVO/BiOCl@C heterostructure exhibits excellent photoelectrochemical capability compared with other as-prepared samples. The photocurrent density and the incident photon-to-electron conversion efficiency (IPCE) are about 5.4 and 9.0 times higher than those of pure BiVO4, respectively. The enhancement of the photoelectrochemical performance can be attributed to the construct of Z-scheme system, which is deduced from the radical trapping experiments. The Mo,W:BVO/BiOCl@C Z-scheme heterojunction enhances the visible-light absorption and reduces the recombination rate of charge carriers. This work provides an effective strategy to construct Z-scheme photoelectrodes for the application of photoelectrochemical water splitting.
    • loading
    • 1971-Supplementary Informations.docx
    • [1]
      J.W. Fu, J.G. Yu, C.J. Jiang, and B. Cheng, G-C3N4-based heterostructured photocatalysts, Adv. Energy Mater., 8(2018), No. 3, art. No. 1701503. doi: 10.1002/aenm.201701503
      [2]
      J.W. Fu, B.C. Zhu, W. You, M. Jaroniec, and J.G. Yu, A flexible bio-inspired H2-production photocatalyst, Appl. Catal. B, 220(2018), p. 148. doi: 10.1016/j.apcatb.2017.08.034
      [3]
      L.R. Bao, S.H. Zhu, Y. Chen, et al., Anionic defects engineering of Co3O4 catalyst for toluene oxidation, Fuel, 314(2022), art. No. 122774. doi: 10.1016/j.fuel.2021.122774
      [4]
      Y. Wang, H. Suzuki, J.J. Xie, et al., Mimicking natural photosynthesis: Solar to renewable H2 fuel synthesis by Z-scheme water splitting systems, Chem. Rev., 118(2018), No. 10, p. 5201. doi: 10.1021/acs.chemrev.7b00286
      [5]
      A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238(1972), No. 5358, p. 37. doi: 10.1038/238037a0
      [6]
      X.F. Zeng, J.S. Wang, Y.N. Zhao, W.L. Zhang, and M.H. Wang, Construction of TiO2-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 503. doi: 10.1007/s12613-020-2193-y
      [7]
      H.H. Wang, W.X. Liu, J. Ma, et al., Design of (GO/TiO2)N one-dimensional photonic crystal photocatalysts with improved photocatalytic activity for tetracycline degradation, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 830. doi: 10.1007/s12613-019-1923-5
      [8]
      M.I. Rahmah, R.S. Sabry, and W.J. Aziz, Preparation and photocatalytic property of Fe2O3/ZnO composites with superhydrophobicity, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 1072. doi: 10.1007/s12613-020-2096-y
      [9]
      Y.Z. Liu, H.Y. Zhang, J. Ke, et al., 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution, Appl. Catal. B, 228(2018), p. 64. doi: 10.1016/j.apcatb.2018.01.067
      [10]
      S. Kment, F. Riboni, S. Pausova, et al., Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting - Superior role of 1D nanoarchitectures and of combined heterostructures, Chem. Soc. Rev., 46(2017), No. 12, p. 3716. doi: 10.1039/C6CS00015K
      [11]
      A.Z. Liao, Y. Zhou, L.X. Xiao, et al., Direct Z scheme-fashioned photoanode systems consisting of Fe2O3 nanorod arrays and underlying thin Sb2Se3 layers toward enhanced photoelectrochemical water splitting performance, Nanoscale, 11(2019), No. 1, p. 109. doi: 10.1039/C8NR08292H
      [12]
      C.C. Feng, Z.B. Jiao, S.P. Li, Y. Zhang, and Y.P. Bi, Facile fabrication of BiVO4 nanofilms with controlled pore size and their photoelectrochemical performances, Nanoscale, 7(2015), No. 48, p. 20374. doi: 10.1039/C5NR06584D
      [13]
      H.L. Tan, R. Amal, and Y.H. Ng, Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: A review, J. Mater. Chem. A, 5(2017), No. 32, p. 16498. doi: 10.1039/C7TA04441K
      [14]
      F.Q. Zhou, J.C. Fan, Q.J. Xu, and Y.L. Min, BiVO4 nanowires decorated with CdS nanoparticles as Z-scheme photocatalyst with enhanced H2 generation, Appl. Catal. B, 201(2017), p. 77. doi: 10.1016/j.apcatb.2016.08.027
      [15]
      Q.X. Jia, A. Iwase, and A. Kudo, BiVO4–Ru/SrTiO3: Rh composite Z-scheme photocatalyst for solar water splitting, Chem. Sci., 5(2014), No. 4, p. 1513. doi: 10.1039/c3sc52810c
      [16]
      J.L. Li, Q.M. Wang, Y.J. Zhang, Y.Q. Liu, X.H. Liu, and Z.B. Jiao, Homogeneously mixed heterostructures of BiVO4/MoS2/RGO with improved photoelectrochemical performances, Solid State Sci., 104(2020), art. No. 106200. doi: 10.1016/j.solidstatesciences.2020.106200
      [17]
      W. Zhao, Y. Feng, H.B. Huang, et al., A novel Z-scheme Ag3VO4/BiVO4 heterojunction photocatalyst: Study on the excellent photocatalytic performance and photocatalytic mechanism, Appl. Catal. B, 245(2019), p. 448. doi: 10.1016/j.apcatb.2019.01.001
      [18]
      S. Yoshino, K. Sato, Y. Yamaguchi, A. Iwase, and A. Kudo, Z-schematic CO2 reduction to CO through interparticle electron transfer between SrTiO3:Rh of a reducing photocatalyst and BiVO4 of a water oxidation photocatalyst under visible light, ACS Appl. Energy Mater., 3(2020), No. 10, p. 10001. doi: 10.1021/acsaem.0c01684
      [19]
      L.L. Gao, X.F. Long, S.Q. Wei, et al., Facile growth of AgVO3 nanoparticles on Mo-doped BiVO4 film for enhanced photoelectrochemical water oxidation, Chem. Eng. J., 378(2019), art. No. 122193. doi: 10.1016/j.cej.2019.122193
      [20]
      H.Y. Li, Y.J. Sun, B. Cai, et al., Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (040) with enhancing photoelectrochemical and photocatalytic performance, Appl. Catal. B, 170-171(2015), p. 206. doi: 10.1016/j.apcatb.2015.01.043
      [21]
      L.W. Shan, G.L. Wang, J. Suriyaprakash, D. Li, L.Z. Liu, and L.M. Dong, Solar light driven pure water splitting of B-doped BiVO4 synthesized via a sol–gel method, J. Alloys Compd., 636(2015), p. 131. doi: 10.1016/j.jallcom.2015.02.113
      [22]
      X.M. Jia, Q.F. Han, H.Z. Liu, S.Z. Li, and H.P. Bi, A dual strategy to construct flowerlike S-scheme BiOBr/BiOAc1−xBrx heterojunction with enhanced visible-light photocatalytic activity, Chem. Eng. J., 399(2020), art. No. 125701. doi: 10.1016/j.cej.2020.125701
      [23]
      Y.Y. Zhou, H.P. Wang, X.C. Liu, et al., An efficient strategy for selective oxidation of ammonia nitrogen into N2 over BiOCl photocatalyst, Appl. Catal. B, 294(2021), art. No. 120265. doi: 10.1016/j.apcatb.2021.120265
      [24]
      M. Sun, Q. Yan, Y. Shao, et al., Facile fabrication of BiOI decorated NaNbO3 cubes: A p–n junction photocatalyst with improved visible-light activity, Appl. Surf. Sci., 416(2017), p. 288. doi: 10.1016/j.apsusc.2017.04.136
      [25]
      J.S. Cheng, L. Frezet, P. Bonnet, and C. Wang, Preparation and photocatalytic properties of a hierarchical BiOCl/BiOF composite photocatalyst, Catal. Lett., 148(2018), No. 5, p. 1281. doi: 10.1007/s10562-018-2296-5
      [26]
      Q.Z. Wang, J. Hui, Y.J. Huang, et al., The preparation of BiOCl photocatalyst and its performance of photodegradation on dyes, Mater. Sci. Semicond. Process., 17(2014), p. 87. doi: 10.1016/j.mssp.2013.08.018
      [27]
      W.T. Lin, X. Yu, Y.H. Shen, et al., Carbon dots/BiOCl films with enhanced visible light photocatalytic performance, J. Nanopart. Res., 19(2017), No. 2, art. No. 56. doi: 10.1007/s11051-017-3764-3
      [28]
      N. Li, B.H. Qin, H.F. Kang, N.N. Cai, S.P. Huang, and Q. Xiao, Engineering hollow carbon spheres: Directly from solid resin spheres to porous hollow carbon spheres via air induced linker cleaving, Nanoscale, 13(2021), No. 32, p. 13873. doi: 10.1039/D1NR03392A
      [29]
      A.B. Chen, Y.Q. Li, Y.F. Yu, et al., Nitrogen-doped hollow carbon spheres for supercapacitors application, J. Alloys Compd., 688(2016), p. 878. doi: 10.1016/j.jallcom.2016.07.163
      [30]
      A. Celzard, A. Pasc, S. Schaefer, et al., Floating hollow carbon spheres for improved solar evaporation, Carbon, 146(2019), p. 232. doi: 10.1016/j.carbon.2019.01.101
      [31]
      S.J. Li, A. Pasc, V. Fierro, and A. Celzard, Hollow carbon spheres, synthesis and applications - A review, J. Mater. Chem. A, 4(2016), No. 33, p. 12686. doi: 10.1039/C6TA03802F
      [32]
      X.F. Li, M.F. Chi, S.M. Mahurin, et al., Graphitized hollow carbon spheres and yolk-structured carbon spheres fabricated by metal-catalyst-free chemical vapor deposition, Carbon, 101(2016), p. 57. doi: 10.1016/j.carbon.2016.01.043
      [33]
      P.M. Gangatharan, M.S. Maubane-Nkadimeng, and N.J. Coville, Building carbon structures inside hollow carbon spheres, Sci. Rep., 9(2019), art. No. 10642. doi: 10.1038/s41598-019-46992-1
      [34]
      A.B. Chen, Y.Y. Wang, Y.F. Yu, et al., Nitrogen-doped hollow carbon spheres for supercapacitors, J. Mater. Sci., 52(2017), No. 6, p. 3153. doi: 10.1007/s10853-016-0604-2
      [35]
      B.K. Mutuma, R. Rodrigues, K. Ranganathan, et al., Hollow carbon spheres and a hollow carbon sphere/polyvinylpyrrolidone composite as ammonia sensors, J. Mater. Chem. A, 5(2017), No. 6, p. 2539. doi: 10.1039/C6TA09424D
      [36]
      H.M. Shao, X.Y. Shen, X.T. Li, et al., Growth mechanism and photocatalytic evaluation of flower-like ZnO micro-structures prepared with SDBS assistance, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 729. doi: 10.1007/s12613-020-2138-5
      [37]
      Z.B. Jiao, X.G. Guan, M. Wang, et al., Undamaged depositing large-area ZnO quantum dots/RGO films on photoelectrodes for the construction of pure Z-scheme, Chem. Eng. J., 356(2019), p. 781. doi: 10.1016/j.cej.2018.09.102
      [38]
      J.L. Li, B.J. Jin, and Z.B. Jiao, Rationally embedded zinc oxide nanospheres serving as electron transport channels in bismuth vanadate/zinc oxide heterostructures for improved photoelectrochemical efficiency, J. Colloid Interface Sci., 592(2021), p. 127. doi: 10.1016/j.jcis.2021.02.025
      [39]
      L.W. Shan, J.C. Li, Z. Wu, et al., Unveiling the intrinsic band alignment and robust water oxidation features of hierarchical BiVO4 phase junction, Chem. Eng. J., 436(2022), art. No. 131516. doi: 10.1016/j.cej.2021.131516
      [40]
      J.L. Li, J.X. Li, H. Yuan, W.J. Zhang, Z.B. Jiao, and S.Z. Xiu, Modification of BiVO4 with partially covered α-Fe2O3 spindles serving as hole-transport channels for significantly improved photoelectrochemical performance, Chem. Eng. J., 398(2020), art. No. 125662. doi: 10.1016/j.cej.2020.125662
      [41]
      X.Q. Wu, J. Zhao, L.P. Wang, et al., Carbon dots as solid-state electron mediator for BiVO4/CDs/CdS Z-scheme photocatalyst working under visible light, Appl. Catal. B, 206(2017), p. 501. doi: 10.1016/j.apcatb.2017.01.049
      [42]
      Q.M. Wang, Y.J. Zhang, J.L. Li, N. Liu, Y.F. Jiao, and Z.B. Jiao, Construction of electron transport channels in type-I heterostructures of Bi2MoO6/BiVO4/g-C3N4 for improved charge carriers separation efficiency, J. Colloid Interface Sci., 567(2020), p. 145. doi: 10.1016/j.jcis.2020.02.003
      [43]
      Z. Song, X.L. Dong, N. Wang, et al., Efficient photocatalytic defluorination of perfluorooctanoic acid over BiOCl nanosheets via a hole direct oxidation mechanism, Chem. Eng. J., 317(2017), p. 925. doi: 10.1016/j.cej.2017.02.126
      [44]
      J.J. Guo, W. Zhao, D.Z. Xiong, Y. Ye, S.B. Li, and B. Zhang, A hydrolysis synthesis route for (001)/(102) coexposed BiOCl nanosheets with high visible light-driven catalytic performance, New J. Chem., 45(2021), No. 42, p. 19996. doi: 10.1039/D1NJ03961J
      [45]
      S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, and K. Yubuta, Novel g-C3N4 nanosheets/CDs/BiOCl photocatalysts with exceptional activity under visible light, J. Am. Ceram. Soc., 102(2019), No. 3, p. 1435. doi: 10.1111/jace.15959
      [46]
      Y.H. Gao, W. Yang, X.Y. Shan, and Y. Chen, Synthesis of “walnut-like” BiOCl/Br solid solution photocatalyst by electrostatic self-assembly method, Int. J. Energy Res., 44(2020), No. 3, p. 2226. doi: 10.1002/er.5084
      [47]
      J. Du, A.B. Chen, X.Q. Gao, Y. Zhang, and H.J. Lv, Reasonable construction of hollow carbon spheres with an adjustable shell surface for supercapacitors, ACS Appl. Mater. Interfaces, 14(2022), No. 9, p. 11750. doi: 10.1021/acsami.1c21009
      [48]
      Y. Wang, G.Q. Tan, T. Liu, et al., Photocatalytic properties of the g-C3N4/{010} facets BiVO4 interface Z-Scheme photocatalysts induced by BiVO4 surface heterojunction, Appl. Catal. B, 234(2018), p. 37. doi: 10.1016/j.apcatb.2018.04.026
      [49]
      S.H. Liang, T.T. Zhang, D.F. Zhang, et al., One-pot combustion synthesis and efficient broad spectrum photoactivity of Bi/BiOBr:Yb,Er/C photocatalyst, J. Am. Ceram. Soc., 101(2018), No. 8, p. 3424. doi: 10.1111/jace.15520
      [50]
      P.F. Zhang, H.O. Liang, H. Liu, J. Bai, and C.P. Li, A novel Z-scheme BiOI/BiOCl nanofibers photocatalyst prepared by one-pot solvothermal with efficient visible-light-driven photocatalytic activity, Mater. Chem. Phys., 272(2021), art. No. 125031. doi: 10.1016/j.matchemphys.2021.125031
      [51]
      Y.T. Xu, H.P. Fu, L. Zhao, L.S. Jian, Q.S. Liang, and X.F. Xiao, Insight into facet-dependent photocatalytic H2O2 production on BiOCl nanosheets, New J. Chem., 45(2021), No. 6, p. 3335. doi: 10.1039/D0NJ05506A
      [52]
      X.D. Tang, C.S. Ma, N. Liu, C.L. Liu, and S.L. Liu, Visible light β-Bi2O3/BiOCl heterojunction photocatalyst with highly enhanced photocatalytic activity, Chem. Phys. Lett., 709(2018), p. 82. doi: 10.1016/j.cplett.2018.08.045
      [53]
      J. Shang, T.Z. Chen, X.W. Wang, L.Y. Sun, and Q.Q. Su, Facile fabrication and enhanced photocatalytic performance: From BiOCl to element-doped BiOCl, Chem. Phys. Lett., 706(2018), p. 483. doi: 10.1016/j.cplett.2018.06.054
      [54]
      Z. Lu, L. Zeng, W.L. Song, Z.Y. Qin, D.W. Zeng, and C.S. Xie, In situ synthesis of C-TiO2/g-C3N4 heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer, Appl. Catal. B, 202(2017), p. 489. doi: 10.1016/j.apcatb.2016.09.052
      [55]
      P.M. Rao, L.L. Cai, C. Liu, et al., Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation, Nano Lett., 14(2014), No. 2, p. 1099. doi: 10.1021/nl500022z
      [56]
      X.H. Gao, H.B. Wu, L.X. Zheng, Y.J. Zhong, Y. Hu, and X.W. Lou, Formation of mesoporous heterostructured BiVO4/Bi2S3 Hollow discoids with enhanced photoactivity, Angew. Chem. Int. Ed., 53(2014), No. 23, p. 5917. doi: 10.1002/anie.201403611
      [57]
      B.J. Jin, Y. Cho, Y. Zhang, et al., A “surface patching” strategy to achieve highly efficient solar water oxidation beyond surface passivation effect, Nano Energy, 66(2019), art. No. 104110. doi: 10.1016/j.nanoen.2019.104110
      [58]
      X. Jia, M. Tahir, L. Pan, et al., Direct Z-scheme composite of CdS and oxygen-defected CdWO4: An efficient visible-light-driven photocatalyst for hydrogen evolution, Appl. Catal. B, 198(2016), p. 154. doi: 10.1016/j.apcatb.2016.05.046
      [59]
      T.Y. Wang, W. Quan, D.L. Jiang, et al., Synthesis of redox-mediator-free direct Z-scheme AgI/WO3 nanocomposite photocatalysts for the degradation of tetracycline with enhanced photocatalytic activity, Chem. Eng. J., 300(2016), p. 280. doi: 10.1016/j.cej.2016.04.128
      [60]
      W.H. Liu, D.D. Liu, K. Wang, X.D. Yang, S.Q. Hu, and L.S. Hu, Fabrication of Z-scheme Ag3PO4/TiO2 heterostructures for enhancing visible photocatalytic activity, Nanoscale Res. Lett., 14(2019), No. 1, art. No. 203. doi: 10.1186/s11671-019-3041-8

    Catalog


    • /

      返回文章
      返回