留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 5
Apr.  2022

图(9)

数据统计

分享

计量
  • 文章访问数:  2579
  • HTML全文浏览量:  904
  • PDF下载量:  96
  • 被引次数: 0
Wei Liu, Jinxing Li, Hanying Xu, Jie Li,  and Xinping Qiu, Stabilized cobalt-free lithium-rich cathode materials with an artificial lithium fluoride coating, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 917-924. https://doi.org/10.1007/s12613-022-2483-7
Cite this article as:
Wei Liu, Jinxing Li, Hanying Xu, Jie Li,  and Xinping Qiu, Stabilized cobalt-free lithium-rich cathode materials with an artificial lithium fluoride coating, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 917-924. https://doi.org/10.1007/s12613-022-2483-7
引用本文 PDF XML SpringerLink
研究论文

无钴富锂正极材料的氟化锂包覆改性研究

  • 通讯作者:

    邱新平    E-mail: qiuxp@mail.tsinghua.edu.cn

文章亮点

  • (1) 开发了高温熔融法在无钴富锂锰基层状材料表面包覆LiF的方法。
  • (2) 系统地研究了在正极表面包覆LiF后对CEI界面的影响规律。
  • (3) 总结了材料循环稳定性和热稳定性提升的机理。
  • 铁取代的无钴富锂锰基层状材料具有比容量高、安全性高和成本低等优点,被认为是最有潜力的下一代锂离子电池正极材料。然而,其在充放电过程中存在首圈库伦效率低、电压衰退和容量衰减等问题,严重制约了其商业化应用。在此,我们开发了一种通过高温熔融法在Li1.2Ni0.15Fe0.1Mn0.55O2颗粒表面直接包覆LiF的方法,可以显著提高材料的循环稳定性和热稳定性。其中,表面包覆0.5wt%的LiF能显著提高其在高电位下的循环稳定性,在0.1 C下首次放电容量高达248 mAh∙g–1,循环100次后容量保持率高达80.2%,放电平均点位衰减量仅为0.25 V,均远优于未包覆的材料。此外,表面包覆0.5wt%的LiF的材料的热安全性得到显著提升,Tonset从238C提升到274C,且放热量减少。分析结果表明,将阴极/电解质界面(cathode–electrolyte interphase, CEI)的主要成分LiF引入到正极材料表面,可以诱导在正极/电解质界面形成一层厚度约3 nm、均匀稳定的CEI膜,有效保护正极免受电解质的侵蚀,减少了过渡金属溶解,有效抑制了材料不可逆相变,并显著提升热安全性,为界面修饰提供了一种新的思路。
  • Research Article

    Stabilized cobalt-free lithium-rich cathode materials with an artificial lithium fluoride coating

    + Author Affiliations
    • Iron-substituted cobalt-free lithium-rich manganese-based materials, with advantages of high specific capacity, high safety, and low cost, have been considered as the potential cathodes for lithium ion batteries. However, challenges, such as poor cycle stability and fast voltage fade during cycling under high potential, hinder these materials from commercialization. Here, we developed a method to directly coat LiF on the particle surface of Li1.2Ni0.15Fe0.1Mn0.55O2. A uniform and flat film was successfully formed with a thickness about 3 nm, which can effectively protect the cathode material from irreversible phase transition during the deintercalation of Li+. After surface coating with 0.5wt% LiF, the cycling stability of Li1.2Ni0.15Fe0.1Mn0.55O2 cycled at high potential was significantly improved and the voltage fade was largely suppressed.
    • loading
    • [1]
      R. Schmuch, R. Wagner, G. Hörpel, T. Placke, and M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries, Nat. Energy, 3(2018), No. 4, p. 267. doi: 10.1038/s41560-018-0107-2
      [2]
      A. Kwade, W. Haselrieder, R. Leithoff, A. Modlinger, F. Dietrich, and K. Droeder, Current status and challenges for automotive battery production technologies, Nat. Energy, 3(2018), No. 4, p. 290. doi: 10.1038/s41560-018-0130-3
      [3]
      P.K. Nayak, E.M. Erickson, F. Schipper, et al., Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries, Adv. Energy Mater., 8(2018), No. 8, art. No. 1702397. doi: 10.1002/aenm.201702397
      [4]
      M.S. Whittingham, Lithium batteries and cathode materials, Chem. Rev., 104(2004), No. 10, p. 4271. doi: 10.1021/cr020731c
      [5]
      J.M. Zheng, S. Myeong, W. Cho, et al., Li- and Mn-rich cathode materials: Challenges to commercialization, Adv. Energy Mater., 7(2017), No. 6, art. No. 1601284. doi: 10.1002/aenm.201601284
      [6]
      S. Hy, F. Felix, J. Rick, W.N. Su, and B.J. Hwang, Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[NixLi(1−2x)/3Mn(2−x)/3]O2 (0 ≤ x ≤ 0.5), J. Am. Chem. Soc., 136(2014), No. 3, p. 999. doi: 10.1021/ja410137s
      [7]
      M.M. Thackeray, S.H. Kang, C.S. Johnson, J.T. Vaughey, R. Benedek, and S.A. Hackney, Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries, J. Mater. Chem., 17(2007), No. 30, p. 3112. doi: 10.1039/b702425h
      [8]
      A.D. Robertson and P.G. Bruce, Mechanism of electrochemical activity in Li2MnO3, Chem. Mater., 15(2003), No. 10, p. 1984. doi: 10.1021/cm030047u
      [9]
      R. Robert, C. Villevieille, and P. Novák, Enhancement of the high potential specific charge in layered electrode materials for lithium-ion batteries, J. Mater. Chem. A, 2(2014), No. 23, p. 8589. doi: 10.1039/c3ta12643a
      [10]
      C. Zhan, T.P. Wu, J. Lu, and K. Amine, Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes – A critical review, Energy Environ. Sci., 11(2018), No. 2, p. 243. doi: 10.1039/C7EE03122J
      [11]
      J.M. Zheng, M. Gu, J. Xiao, P.J. Zuo, C.M. Wang, and J.G. Zhang, Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process, Nano Lett., 13(2013), No. 8, p. 3824. doi: 10.1021/nl401849t
      [12]
      M. Xu, Z.Y. Chen, H.L. Zhu, X.Y. Yan, L.J. Li, and Q.F. Zhao, Mitigating capacity fade by constructing highly ordered mesoporous Al2O3/polyacene double-shelled architecture in Li-rich cathode materials, J. Mater. Chem. A, 3(2015), No. 26, p. 13933. doi: 10.1039/C5TA03676C
      [13]
      B.W. Xiao and X.L. Sun, Surface and subsurface reactions of lithium transition metal oxide cathode materials: An overview of the fundamental origins and remedying approaches, Adv. Energy Mater., 8(2018), No. 29, art. No. 1802057. doi: 10.1002/aenm.201802057
      [14]
      Y.P. Gan, Y.S. Wang, J.F. Han, et al., Synthesis and electrochemical performance of nano TiO2(B)-coated Li[Li0.2Mn0.54Co0.13Ni0.13]O2 cathode materials for lithium-ion batteries, New J. Chem., 41(2017), No. 21, p. 12962. doi: 10.1039/C7NJ02624B
      [15]
      J.M. Zheng, M. Gu, J. Xiao, et al., Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials, Chem. Mater., 26(2014), No. 22, p. 6320. doi: 10.1021/cm502071h
      [16]
      F. Wu, J.R. Liu, L. Li, et al., Surface modification of Li-rich cathode materials for lithium-ion batteries with a PEDOT: PSS conducting polymer, ACS Appl. Mater. Interfaces, 8(2016), No. 35, p. 23095. doi: 10.1021/acsami.6b07431
      [17]
      Z.K. Zhao, H.L. Xie, Z.Y. Wen, et al., Tuning Li3PO4 modification on the electrochemical performance of nickel-rich LiNi0.6Co0.2Mn0.2O2, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1488. doi: 10.1007/s12613-020-2232-8
      [18]
      Y. Yamada, J.H. Wang, S. Ko, E. Watanabe, and A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes, Nat. Energy, 4(2019), No. 4, p. 269. doi: 10.1038/s41560-019-0336-z
      [19]
      X. Cao, X.D. Ren, L.F. Zou, et al., Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization, Nat. Energy, 4(2019), No. 9, p. 796. doi: 10.1038/s41560-019-0464-5
      [20]
      C.V. Amanchukwu, X. Kong, J. Qin, Y. Cui, and Z.N. Bao, Nonpolar alkanes modify lithium-ion solvation for improved lithium deposition and stripping, Adv. Energy Mater., 9(2019), No. 41, art. No. 1902116. doi: 10.1002/aenm.201902116
      [21]
      Z.A. Yu, H.S. Wang, X. Kong, et al., Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries, Nat. Energy, 5(2020), No. 7, p. 526. doi: 10.1038/s41560-020-0634-5
      [22]
      B.P. Thapaliya, S. Misra, S.Z. Yang, et al., Enhancing cycling stability and capacity retention of NMC811 cathodes by reengineering interfaces via electrochemical fluorination, Adv. Mater. Interfaces, (2022), art. No. 2200035. doi: 10.1002/admi.202200035
      [23]
      L.F. Wang, M.M. Geng, X.N. Ding, et al., Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 538. doi: 10.1007/s12613-020-2218-6
      [24]
      W. Liu, J.X. Li, W.T. Li, H.Y. Xu, C. Zhang, and X.P. Qiu, Inhibition of transition metals dissolution in cobalt-free cathode with ultrathin robust interphase in concentrated electrolyte, Nat. Commun., 11(2020), art. No. 3629. doi: 10.1038/s41467-020-17396-x
      [25]
      J.W. Min, J. Gim, J.J. Song, et al., Simple, robust metal fluoride coating on layered Li1.23Ni0.13Co0.14Mn0.56O2 and its effects on enhanced electrochemical properties, Electrochim. Acta, 100(2013), p. 10. doi: 10.1016/j.electacta.2013.03.085
      [26]
      X.L. Cheng, H.Z. Wei, W.J. Hao, et al., A cobalt-free Li(Li0.16Ni0.19Fe0.18Mn0.46)O2 cathode for lithium-ion batteries with anionic redox reactions, ChemSusChem, 12(2019), No. 6, p. 1162. doi: 10.1002/cssc.201802436

    Catalog


    • /

      返回文章
      返回