留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 2
Feb.  2023

图(13)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  780
  • HTML全文浏览量:  224
  • PDF下载量:  53
  • 被引次数: 0
Lele Niu, Zhengjian Liu, Jianliang Zhang, Dawei Lan, Sida Li, Zhen Li, and Yaozu Wang, Mineralogical characteristics, metallurgical properties and phase structure evolution of Ca-rich hematite sintering, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 303-313. https://doi.org/10.1007/s12613-022-2484-6
Cite this article as:
Lele Niu, Zhengjian Liu, Jianliang Zhang, Dawei Lan, Sida Li, Zhen Li, and Yaozu Wang, Mineralogical characteristics, metallurgical properties and phase structure evolution of Ca-rich hematite sintering, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 303-313. https://doi.org/10.1007/s12613-022-2484-6
引用本文 PDF XML SpringerLink
研究论文

高钙赤铁矿烧结的矿物特性、冶金性能及相结构演变

  • 通讯作者:

    王耀祖    E-mail: wgyozu@163.com

文章亮点

  • (1) 全面地研究了高钙型赤铁矿的矿物学特性。
  • (2) 研究并分析了高钙赤铁矿与国产磁铁精粉混合烧结行为及其在烧结过程的作用机理。
  • (3) 基于烧结指标和烧结矿冶金性能的综合表现计算并分析了不同高钙赤铁矿配比的优劣。
  • 为了研究高钙赤铁矿的烧结特性,采用了化学分析、激光衍射、扫描电镜、X射线衍射和微型烧结等方法和手段分析了其矿物学特性,并设计烧结杯试验探究其与国产磁铁精粉的混合烧结行为,最后采用灰色关联数学模型计算和比较了不同高钙赤铁矿含量下的综合烧结性能。结果表明,高钙赤铁矿粒度较粗,所含Ca元素以方解石(CaCO3)的形式存在,具有较强的自熔特性且自熔产生的液相结晶形态较好。在烧结过程中添加20wt%的含量后,能够提高利用系数、减少固体燃料消耗、提高烧结矿还原性指数和改善高炉的透气性指数的幅度分别为0.45 t/(m2·h)、6.11 kg/t、6.17%和65.39 kPa·°C。与全磁铁精粉烧结过程相比,高钙赤铁矿烧结还可以提高烧结烟气的热值,有利于烟气回收热量并进行二次利用。随着高钙赤铁矿含量的增加,烧结混合料在成矿过程中的聚合方式由以液相粘结为主转变为局部液相粘结伴随着铁氧化物连晶的共同作用。根据灰色关系模型的计算,在0–20wt%的配比范围内,高钙赤铁矿含量增加对烧结经济技术指标与烧结矿冶金性能综合表现的提升是有利的。
  • Research Article

    Mineralogical characteristics, metallurgical properties and phase structure evolution of Ca-rich hematite sintering

    + Author Affiliations
    • In order to study the sintering characteristics of Ca-rich iron ore, chemical analysis, laser diffraction, scanning electron microscopy, XRD-Rietveld method, and micro-sintering were used to analyze the mineralogical properties and sintering pot tests were used to study the sintering behavior. In addition, a grey correlation mathematical model was used to calculate and compare the comprehensive sintering performance under different calcium-rich iron ore contents. The results demonstrate that the Ca-rich iron ore has coarse grain size and strong self-fusing characteristics with Ca element in the form of calcite (CaCO3) and the liquid phase produced by the self-fusing of the calcium-rich iron ore is well crystallized. Its application with a 20wt% content in sintering improves sinter productivity, reduces fuel consumption, enhances reduction index, and improves gas permeability in blast furnace by 0.45 t/(m2·h), 6.11 kg/t, 6.17%, and 65.39 kPa·°C, respectively. The Ca-rich iron ore sintering can improve the calorific value of sintering flue gas compared with magnetite sintering, which is conducive to recovering heat for secondary use. As the content of the Ca-rich iron ore increases, sinter agglomeration shifts from localized liquid-phase bonding to a combination of localized liquid-phase bonding and iron oxide crystal connection. Based on an examination of the greater weight value of productivity with grey correlation analysis, the Ca-rich iron ore is beneficial for the comprehensive index of sintering in the range of 0–20wt% content. Therefore, it may be used in sintering with magnetite concentrates as the major ore species.
    • loading
    • [1]
      World Steel Association, World Steel in Figures 2017 [2017-05-29]. https://worldsteel.org/zh-hans/steel-topics/statistics/world-steel-in-figures/
      [2]
      X. Bo, Z.L. Li, J.B. Qu, et al., The spatial-temporal pattern of sintered flue gas emissions in iron and steel enterprises of China, J. Cleaner Prod., 266(2020), p. 121667. doi: 10.1016/j.jclepro.2020.121667
      [3]
      L.X. Yang and L. Davis, Assimilation and mineral formation during sintering for blends containing magnetite concentrate and hematite/pisolite sintering fines, ISIJ Int., 39(1999), No. 3, p. 239. doi: 10.2355/isijinternational.39.239
      [4]
      D.H. Liu, H. Liu, J.L. Zhang, et al., Basic characteristics of Australian iron ore concentrate and its effects on sinter properties during the high-limonite sintering process, Int. J. Miner. Metall. Mater., 24(2017), No. 9, p. 991. doi: 10.1007/s12613-017-1487-1
      [5]
      H.L. Han and L.M. Lu, Recent advances in sintering with high proportions of magnetite concentrates, Miner. Process. Extr. Metall. Rev., 39(2018), No. 4, p. 217. doi: 10.1080/08827508.2017.1415206
      [6]
      J.M.F. Clout and J.R. Manuel, Fundamental investigations of differences in bonding mechanisms in iron ore sinter formed from magnetite concentrates and hematite ores, Powder Technol., 130(2003), No. 1-3, p. 393. doi: 10.1016/S0032-5910(02)00241-3
      [7]
      V.D.M. Oliveira, V.G. de Resende, A.L.A. Domingues, M.C. Bagatini, and L.F.A. de Castro, Alternative to deal with high level of fine materials in iron ore sintering process, J. Mater. Res. Technol., 8(2019), No. 5, p. 4985. doi: 10.1016/j.jmrt.2019.07.032
      [8]
      T. Jiang, G.H. Li, H.T. Wang, K.C. Zhang, and Y.B. Zhang, Composite agglomeration process (CAP) for preparing blast furnace burden, Ironmaking Steelmaking, 37(2010), No. 1, p. 1. doi: 10.1179/174328109X462995
      [9]
      T. Jiang, L.P. Xu, Q. Zhong, et al., Efficient preparation of blast furnace burdens from titanomagnetite concentrate by composite agglomeration process, JOM, 73(2021), No. 1, p. 326. doi: 10.1007/s11837-020-04480-2
      [10]
      T. Jiang, Z.W. Yu, Z.W. Peng, M.J. Rao, Y.B. Zhang, and G.H. Li, Preparation of BF burden from titanomagnetite concentrate by composite agglomeration process (CAP), ISIJ Int., 55(2015), No. 8, p. 1599. doi: 10.2355/isijinternational.ISIJINT-2015-094
      [11]
      K.I. Higuchi, T. Kawaguchi, M. Kobayashi, et al., Improvement of productivity by stand-support sintering in commercial sintering machines, ISIJ Int., 40(2000), No. 12, p. 1188. doi: 10.2355/isijinternational.40.1188
      [12]
      L. Lu and O. Ishiyama, Recent advances in iron ore sintering, Miner. Process. Extr. Metall., 125(2016), No. 3, p. 132. doi: 10.1080/03719553.2016.1165500
      [13]
      Y.Z. Wang, Z.J. Liu, J.L. Zhang, Y.P. Zhang, L.L. Niu, and Q. Cheng, Study of stand-support sintering to achieve high oxygen potential in iron ore sintering to enhance productivity and reduce CO content in exhaust gas, J. Cleaner Prod., 252(2020), art. No. 119855. doi: 10.1016/j.jclepro.2019.119855
      [14]
      D. Fernández-González, I. Ruiz-Bustinza, J. Mochón, C. González-Gasca, and L.F. Verdeja, Iron ore sintering: Environment, automatic, and control techniques, Miner. Process. Extr. Metall. Rev., 38(2017), No. 4, p. 238. doi: 10.1080/08827508.2017.1288118
      [15]
      T.C. Ooi, S. Campbell-Hardwick, D.Q. Zhu, and J. Pan, Sintering performance of magnetite-hematite-goethite and hematite-goethite iron ore blends and microstructure of products of sintering, Miner. Process. Extr. Metall. Rev., 35(2014), No. 4, p. 266. doi: 10.1080/08827508.2013.793681
      [16]
      J.L. Zhang, Z.W. Hu, H.B. Zuo, Z.J. Liu, Z.X. Zhao, and T.J. Yang, Ore blending ratio optimisation for sintering based on iron ore properties and cost, Ironmaking Steelmaking, 41(2014), No. 4, p. 279. doi: 10.1179/1743281213Y.0000000134
      [17]
      N.A.S. Webster, M.I. Pownceby, I.C. Madsen, and J.A. Kimpton, Silico-ferrite of calcium and aluminum (SFCA) iron ore sinter bonding phases: New insights into their formation during heating and cooling, Metall. Mater. Trans. B, 43(2012), No. 6, p. 1344. doi: 10.1007/s11663-012-9740-5
      [18]
      M.I. Pownceby and J.M.F. Clout, Importance of fine ore chemical composition and high temperature phase relations: Applications to iron ore sintering and pelletising, Miner. Process. Extr. Metall., 112(2003), No. 1, p. 44. doi: 10.1179/037195503225011402
      [19]
      S.W. Kim, J.W. Jeon, I.K. Suh, and S.M. Jung, Improvement of sintering characteristics by selective granulation of high Al2O3 iron ores and ultrafine iron ores, Ironmaking Steelmaking, 43(2016), No. 7, p. 500. doi: 10.1080/03019233.2015.1109293
      [20]
      L.S. Li, J.B. Liu, X.R. Wu, X. Ren, W.B. Bing, and L.S. Wu, Influence of Al2O3 on equilibrium sinter phase in N2 atmosphere, ISIJ Int., 50(2010), No. 2, p. 327. doi: 10.2355/isijinternational.50.327
      [21]
      T. Umadevi, P.C. Mahapatra, and M. Prabhu, Influence of MgO addition on microstructure and properties of low and high silica iron ore sinter, Miner. Process. Extr. Metall., 122(2013), No. 4, p. 238. doi: 10.1179/1743285513Y.0000000046
      [22]
      Y. Hosotani, K. Yamaguchi, T. Orimoto, K.I. Higuchi, T. Kawaguchi, and H. Goto, Development of evaluation method for softening-melting properties of sinter, Tetsu-to-Hagane, 83(1997), No. 2, p. 97. doi: 10.2355/tetsutohagane1955.83.2_97
      [23]
      Y.N. Qie, Q. Lyu, X.J. Liu, et al., Effect of hydrogen addition on softening and melting reduction behaviors of ferrous burden in gas-injection blast furnace, Metall. Mater. Trans. B, 49(2018), No. 5, p. 2622. doi: 10.1007/s11663-018-1299-3
      [24]
      S.L. Wu, Y.N. Lu, Z.B. Hong, and H. Zhou, Improving the softening and melting properties of ferrous burden with high Al2O3 content for blast furnace by ore blending, ISIJ Int., 60(2020), No. 7, p. 1504. doi: 10.2355/isijinternational.ISIJINT-2019-833
      [25]
      S.L. Wu, W. Huang, M.Y. Kou, X.L. Liu, K.P. Du, and K.F. Zhang, Influence of Al2O3 content on liquid phase proportion and fluidity of primary slag and final slag in blast furnace, Steel Res. Int., 86(2015), No. 5, p. 550.[LinkOut]. doi: 10.1002/srin.201400158
      [26]
      Y.X. Xue, J. Pan, D.Q. Zhu, et al., Effect of alumina occurrence on sintering performance of iron ores and its action mechanism, J. Mater. Res. Technol., 12(2021), p. 1157.[LinkOut]. doi: 10.1016/j.jmrt.2021.03.054
      [27]
      D.H. Liu, J.L. Zhang, Z.J. Liu, Y.Z. Wang, X. Xue, and J. Yan, Effects of iron sand ratios on the basic characteristics of vanadium titanium mixed ores, JOM, 68(2016), No. 9, p. 2418. doi: 10.1007/s11837-016-1989-8
      [28]
      J. E, Y. Zeng, Y. Jin, et al., Heat dissipation investigation of the power lithium-ion battery module based on orthogonal experiment design and fuzzy grey relation analysis, Energy, 211(2020), art. No. 118596. doi: 10.1016/j.energy.2020.118596
      [29]
      Z.J. Liu, L.L. Niu, S.J. Zhang, et al., Comprehensive technologies for iron ore sintering with a bed height of 1000 mm to improve sinter quality, enhance productivity and reduce fuel consumption, ISIJ Int., 60(2020), No. 11, p. 2400. doi: 10.2355/isijinternational.ISIJINT-2020-219

    Catalog


    • /

      返回文章
      返回