留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 5
Apr.  2022

图(20)  / 表(6)

数据统计

分享

计量
  • 文章访问数:  3854
  • HTML全文浏览量:  1740
  • PDF下载量:  475
  • 被引次数: 0
Gaoyang Liu, Faguo Hou, Shanlong Peng, Xindong Wang, and Baizeng Fang, Process and challenges of stainless steel based bipolar plates for proton exchange membrane fuel cells, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 1099-1119. https://doi.org/10.1007/s12613-022-2485-5
Cite this article as:
Gaoyang Liu, Faguo Hou, Shanlong Peng, Xindong Wang, and Baizeng Fang, Process and challenges of stainless steel based bipolar plates for proton exchange membrane fuel cells, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 1099-1119. https://doi.org/10.1007/s12613-022-2485-5
引用本文 PDF XML SpringerLink
特约综述

车用燃料电池金属双极板的技术进展与挑战

  • 通讯作者:

    刘高阳    E-mail: bfang@chbe.ubc.ca

    方百增    E-mail: bfang@chbe.ubc.ca

文章亮点

  • (1)系统地阐述了金属双极板的优势和在质子膜燃料电池中应用的一些问题。
  • (2)探讨金属双极板的腐蚀和钝化机理,表征和评价以及表面改性技术。
  • (3)展示了不锈钢双极板发展的非涂层和涂层技术路线。
  • 以质子交换膜燃料电池(PEMFC)为动力的汽车因其无污染、低温启动、高能量密度、低噪声等优点而被认为是替代传统燃料汽车的最终解决方案。双极板作为质子交换膜燃料电池(PEMFC)的核心部件之一,在电池堆中起着重要作用。传统的石墨双极板和复合双极板因其强度低、脆性高、加工成本高等缺点而受到批评。相比之下,不锈钢双极板(SSBPs)因其优异的综合性能、低廉的成本和多样化的汽车应用选择,近年来引起了国内外研究者的广泛关注。然而,SSBP在PEMFC工作环境中容易发生腐蚀和钝化,导致输出功率降低或过早失效。本文综述了目前SSBPs研究中的腐蚀和钝化机理、表征和评价以及表面改性技术。展示了SSBPs的非涂层和涂层技术路线,如基底成分调节、热氮化、电镀、离子镀、化学气相沉积和物理气相沉积等。SSBPs的替代涂层材料有金属涂层、金属氮化物涂层、导电聚合物涂层和聚合物/碳涂层,这两种表面改性技术都可以在不影响接触电阻的情况下解决不锈钢的耐腐蚀问题,但仍面临长期稳定性、低成本可行性和批量生产工艺等限制。本文的研究有助于丰富高性能长寿命质子交换膜燃料电池(PEMFC)汽车用双极板的知识。
  • Invited Review

    Process and challenges of stainless steel based bipolar plates for proton exchange membrane fuel cells

    + Author Affiliations
    • Proton exchange membrane fuel cell (PEMFC) powered automobiles have been recognized to be the ultimate solution to replace traditional fuel automobiles because of their advantages of PEMFCs such as no pollution, low temperature start-up, high energy density, and low noise. As one of the core components, the bipolar plates (BPs) play an important role in the PEMFC stack. Traditional graphite BPs and composite BPs have been criticized for their shortcomings such as low strength, high brittleness, and high processing cost. In contrast, stainless steel BPs (SSBPs) have recently attracted much attention of domestic and foreign researchers because of their excellent comprehensive performance, low cost, and diverse options for automobile applications. However, the SSBPs are prone to corrosion and passivation in the PEMFC working environment, which lead to reduced output power or premature failure. This review is aimed to summarize the corrosion and passivation mechanisms, characterizations and evaluation, and the surface modification technologies in the current SSBPs research. The non-coating and coating technical routes of SSBPs are demonstrated, such as substrate component regulation, thermal nitriding, electroplating, ion plating, chemical vapor deposition, and physical vapor deposition, etc. Alternative coating materials for SSBPs are metal coatings, metal nitride coatings, conductive polymer coatings, and polymer/carbon coatings, etc. Both the surface modification technologies can solve the corrosion resistance problem of stainless steel without affecting the contact resistance, however still facing restraints such as long-time stability, feasibility of low-cost, and mass production process. This paper is believed to enrich the knowledge of high-performance and long-life BPs applied for PEMFC automobiles.
    • loading
    • [1]
      Y. Wang, H. Yuan, A. Martinez, P. Hong, H. Xu, and F.R. Bockmiller, Polymer electrolyte membrane fuel cell and hydrogen station networks for automobiles: Status, technology, and perspectives, Adv. Appl. Energy, 2(2021), art. No. 100011. doi: 10.1016/j.adapen.2021.100011
      [2]
      J. Rodríguez-Varela, I.L. Alonso-Lemus, O. Savadogo, and K. Palaniswamy, Overview: Current trends in green electrochemical energy conversion and storage, J. Mater. Res., 36(2021), No. 20, p. 4071. doi: 10.1557/s43578-021-00417-w
      [3]
      Y. Luo, Y.H. Wu, B. Li, T.D. Mo, Y. Li, S.P. Feng, J.K. Qu, and P.K. Chu, Development and application of fuel cells in the automobile industry, J. Energy Storage, 42(2021), art. No. 103124. doi: 10.1016/j.est.2021.103124
      [4]
      M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells, Nature, 486(2012), No. 7401, p. 43. doi: 10.1038/nature11115
      [5]
      V. Mazumder, Y. Lee, and S.H. Sun, Recent development of active nanoparticle catalysts for fuel cell reactions, Adv. Funct. Mater., 20(2010), No. 8, p. 1224. doi: 10.1002/adfm.200902293
      [6]
      B. Smitha, S. Sridhar, and A.A. Khan, Solid polymer electrolyte membranes for fuel cell applications—A review, J. Membr. Sci., 259(2005), No. 1-2, p. 10. doi: 10.1016/j.memsci.2005.01.035
      [7]
      S.D. Wu, W.M. Yang, H. Yan, X.H. Zuo, Z.B. Cao, H.Y. Li, M.N. Shi, and H.B. Chen, A review of modified metal bipolar plates for proton exchange membrane fuel cells, Int. J. Hydrogen Energy, 46(2021), No. 12, p. 8672. doi: 10.1016/j.ijhydene.2020.12.074
      [8]
      J. Bi, J.M. Yang, X.X. Liu, D.D. Wang, Z.Y. Yang, G.Y. Liu, and X.D. Wang, Development and evaluation of nitride coated titanium bipolar plates for PEM fuel cells, Int. J. Hydrogen Energy, 46(2021), No. 1, p. 1144. doi: 10.1016/j.ijhydene.2020.09.217
      [9]
      T. Stein and Y. Ein-Eli, Challenges and perspectives of metal-based proton exchange membrane’s bipolar plates: Exploring durability and longevity, Energy Technol., 8(2020), No. 6, art. No. 2000007. doi: 10.1002/ente.202000007
      [10]
      R. Stroebel, DOE Bipolar Plates Workshop Approach to Provide a Metallic Bipolar Plate Module to the Industry, DOE bipolar plate workshop, Michigan [2017-02-14]. https://www.energy.gov/sites/prod/files/2017/05/f34/fcto_biploar_plates_wkshp_stroebel.pdf
      [11]
      A. Hermann, T. Chaudhuri, and P. Spagnol, Bipolar plates for PEM fuel cells: A review, Int. J. Hydrogen Energy, 30(2005), No. 12, p. 1297. doi: 10.1016/j.ijhydene.2005.04.016
      [12]
      P.Y. Yi, L.F. Peng, T. Zhou, J.Q. Huang, and X.M. Lai, Composition optimization of multilayered chromium-nitride-carbon film on 316L stainless steel as bipolar plates for proton exchange membrane fuel cells, J. Power Sources, 236(2013), p. 47. doi: 10.1016/j.jpowsour.2013.02.034
      [13]
      C.H. Shen, M. Pan, Q. Yuan, and R.Z. Yuan, Studies on preparation and performance of sodium silicate/graphite conductive composites, J. Compos. Mater., 40(2006), No. 9, p. 839. doi: 10.1177/0021998306061296
      [14]
      H.C. Kuan, C.C.M. Ma, K.H. Chen, and S.M. Chen, Preparation, electrical, mechanical and thermal properties of composite bipolar plate for a fuel cell, J. Power Sources, 134(2004), No. 1, p. 7. doi: 10.1016/j.jpowsour.2004.02.024
      [15]
      J. Wind, R. Späh, W. Kaiser, and G. Böhm, Metallic bipolar plates for PEM fuel cells, J. Power Sources, 105(2002), No. 2, p. 256. doi: 10.1016/S0378-7753(01)00950-8
      [16]
      W. Yoon, X.Y. Huang, P. Fazzino, K.L. Reifsnider, and M.A. Akkaoui, Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cells, J. Power Sources, 179(2008), No. 1, p. 265. doi: 10.1016/j.jpowsour.2007.12.034
      [17]
      Y. Fu, M. Hou, G.Q. Lin, J.B. Hou, Z.G. Shao, and B.L. Yi, Coated 316L stainless steel with CrxN film as bipolar plate for PEMFC prepared by pulsed bias arc ion plating, J. Power Sources, 176(2008), No. 1, p. 282. doi: 10.1016/j.jpowsour.2007.10.038
      [18]
      Y.M. Xiong, S.L. Zhu, and F.H. Wang, Synergistic corrosion behavior of coated Ti60 alloys with NaCl deposit in moist air at elevated temperature, Corros. Sci., 50(2008), No. 1, p. 15. doi: 10.1016/j.corsci.2007.06.007
      [19]
      L.J. Yang, H.J. Yu, L.J. Jiang, L. Zhu, X.Y. Jian, and Z, Wang, Graphite-polypyrrole coated 316L stainless steel as bipolar plates for proton exchange membrane fuel cells, Int. J. Miner. Metall. Mater., 18(2011), No. 1, p. 53. doi: 10.1007/s12613-011-0399-8
      [20]
      V. Mehta and J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing, J. Power Sources, 114(2003), No. 1, p. 32. doi: 10.1016/S0378-7753(02)00542-6
      [21]
      M.P. Brady, H. Wang, B. Yang, J.A. Turner, M. Bordignon, R. Molins, M.A. Elhamid, L. Lipp, and L.R. Walker, Growth of Cr-Nitrides on commercial Ni–Cr and Fe–Cr base alloys to protect PEMFC bipolar plates, Int. J. Hydrogen Energy, 32(2007), No. 16, p. 3778. doi: 10.1016/j.ijhydene.2006.08.044
      [22]
      Y. Wang, C.M. Wu, W. Li, H.Y. Li, Y.C. Li, X.Y. Zhang, and L.L. Sun, Effect of bionic hydrophobic structures on the corrosion performance of Fe-based amorphous metallic coatings, Surf. Coat. Technol., 416(2021), art. No. 127176. doi: 10.1016/j.surfcoat.2021.127176
      [23]
      R.A. Antunes, M.C.L. Oliveira, G. Ett, and V. Ett, Corrosion of metal bipolar plates for PEM fuel cells: A review, Int. J. Hydrogen Energy, 35(2010), No. 8, p. 3632. doi: 10.1016/j.ijhydene.2010.01.059
      [24]
      S.J. Lee, C.H. Huang, J.J. Lai, and Y.P. Chen, Corrosion-resistant component for PEM fuel cells, J. Power Sources, 131(2004), No. 1-2, p. 162. doi: 10.1016/j.jpowsour.2004.01.008
      [25]
      Q. Li, X. Lin, Q. Luo, Y.A. Chen, J.F. Wang, B. Jiang, and F.S. Pan, Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32. doi: 10.1007/s12613-021-2337-8
      [26]
      Y. Li, W.J. Meng, S. Swathirajan, S.J. Harris, and G.L. Doll, Corrosion Resistant Pem Fuel Cell, United States Patent, Appl. 5624769, 1997.
      [27]
      C. Jirarungsatian and A. Prateepasen, Pitting and uniform corrosion source recognition using acoustic emission parameters, Corros. Sci., 52(2010), No. 1, p. 187. doi: 10.1016/j.corsci.2009.09.001
      [28]
      Z.G. Chen, G.F. Zhang, and F. Bobaru, The Influence of passive film damage on pitting corrosion, J. Electrochem. Soc., 163(2016), No. 2, p. C19. doi: 10.1149/2.0521602jes
      [29]
      H.Y. Tian, L. Fan, Y.Z. Li, K. Pang, F.Z. Chu, X. Wang, and Z.Y. Cui, Effect of NH4+ on the pitting corrosion behavior of 316 stainless steel in the chloride environment, J. Electroanal. Chem., 894(2021), art. No. 115368. doi: 10.1016/j.jelechem.2021.115368
      [30]
      N.B. Huang, C.H. Liang, and B.L. Yi, Corrosion resistance of PANi-coated steel in simulated PEMFC anodic environment, Mater. Corros., 59(2008), No. 1, p. 21. doi: 10.1002/maco.200704062
      [31]
      J.C. Jiang, S.J. Liu, Z.Y. Ma, L.Y. Wang, and K. Wu, Butler-Volmer equation-based model and its implementation on state of power prediction of high-power lithium titanate batteries considering temperature effects, Energy, 117(2016), p. 58. doi: 10.1016/j.energy.2016.10.087
      [32]
      G. Hinds and E. Brightman, In situ mapping of electrode potential in a PEM fuel cell, Electrochem. Commun., 17(2012), p. 26. doi: 10.1016/j.elecom.2012.01.007
      [33]
      G. Hinds and E. Brightman, Towards more representative test methods for corrosion resistance of PEMFC metallic bipolar plates, Int. J. Hydrogen Energy, 40(2015), No. 6, p. 2785. doi: 10.1016/j.ijhydene.2014.12.085
      [34]
      J. Healy, C. Hayden, T. Xie, K. Olson, R. Waldo, M. Brundage, H. Gasteiger, and J. Abbott, Aspects of the chemical degradation of PFSA ionomers used in PEM fuel cells, Fuel Cells, 5(2005), No. 2, p. 302. doi: 10.1002/fuce.200400050
      [35]
      A.M. Abdullah, A.M. Mohammad, T. Okajima, F. Kitamura, and T. Ohsaka, Effect of load, temperature and humidity on the pH of the water drained out from H2/air polymer electrolyte membrane fuel cells, J. Power Sources, 190(2009), No. 2, p. 264. doi: 10.1016/j.jpowsour.2009.01.034
      [36]
      K.H. Hou, C.H. Lin, M.D. Ger, S.W. Shiah, and H.M. Chou, Analysis of the characterization of water produced from proton exchange membrane fuel cell (PEMFC) under different operating thermal conditions, Int. J. Hydrogen Energy, 37(2012), No. 4, p. 3890. doi: 10.1016/j.ijhydene.2011.05.129
      [37]
      X.Z. Wang, C.P. Ye, D.D. Shi, H.Q. Fan, and Q. Li, Potential polarization accelerated degradation of interfacial electrical conductivity for Au/TiN coated 316L SS bipolar plates used in polymer electrolyte membrane fuel cells, Corros. Sci., 189(2021), art. No. 109624. doi: 10.1016/j.corsci.2021.109624
      [38]
      M. Liu, H.F. Xu, J. Fu, and Y. Tian, Conductive and corrosion behaviors of silver-doped carbon-coated stainless steel as PEMFC bipolar plates, Int. J. Miner. Metall. Mater., 23(2016), No. 7, p. 844. doi: 10.1007/s12613-016-1299-8
      [39]
      H.Q. Fan, D.D. Shi, X.Z. Wang, J.L. Luo, J.Y. Zhang, and Q. Li, Enhancing through-plane electrical conductivity by introducing Au microdots onto TiN coated metal bipolar plates of PEMFCs, Int. J. Hydrogen Energy, 45(2020), No. 53, p. 29442. doi: 10.1016/j.ijhydene.2020.07.270
      [40]
      D.W. DeBerry, Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating, J. Electrochem. Soc., 132(1985), No. 5, p. 1022. doi: 10.1149/1.2114008
      [41]
      A.A. Hermas and M.S. Morad, A comparative study on the corrosion behaviour of 304 austenitic stainless steel in sulfamic and sulfuric acid solutions, Corros. Sci., 50(2008), No. 9, p. 2710. doi: 10.1016/j.corsci.2008.06.029
      [42]
      J.S. Kim, W.H.A. Peelen, K. Hemmes, and R.C. Makkus, Effect of alloying elements on the contact resistance and the passivation behaviour of stainless steels, Corros. Sci., 44(2002), No. 4, p. 635. doi: 10.1016/S0010-938X(01)00107-X
      [43]
      R. Hornung and G. Kappelt, Bipolar plate materials development using Fe-based alloys for solid polymer fuel cells, J. Power Sources, 72(1998), No. 1, p. 20. doi: 10.1016/S0378-7753(97)02774-2
      [44]
      X.W. Yuan, X. Wang, Y. Cao, and H.Y. Yang, Natural passivation behavior and its influence on chloride-induced corrosion resistance of stainless steel in simulated concrete pore solution, J. Mater. Res. Technol., 9(2020), No. 6, p. 12378. doi: 10.1016/j.jmrt.2020.08.056
      [45]
      E. Hamada, K. Yamada, M. Nagoshi, N. Makiishi, K. Sato, T. Ishii, K. Fukuda, S. Ishikawa, and T. Ujiro, Direct imaging of native passive film on stainless steel by aberration corrected STEM, Corros. Sci., 52(2010), No. 12, p. 3851. doi: 10.1016/j.corsci.2010.08.025
      [46]
      X.Y. Wang, Y.S. Wu, L. Zhang, and B.F. Ding, Passivationm echanism of 316L stainless steel in oxidizing acid solution, J. Univ. Sci. Technol. Beijing, 7(2000), No. 3, p. 204.
      [47]
      C.Y. Zhang, Y.H. Wei, J. Yang, W. Emori, and J. Li, Effects of nitric acid passivation on the corrosion behavior of ZG06Cr13Ni4Mo stainless steel in simulated marine atmosphere, Mater. Corros., 71(2020), No. 9, p. 1576. doi: 10.1002/maco.202011597
      [48]
      Z.J. Lu and D.D. Macdonald, Transient growth and thinning of the barrier oxide layer on iron measured by real-time spectroscopic ellipsometry, Electrochim. Acta, 53(2008), No. 26, p. 7696. doi: 10.1016/j.electacta.2008.05.021
      [49]
      S. Habibzadeh, L. Li, D. Shum-Tim, E.C. Davis, and S. Omanovic, Electrochemical polishing as a 316L stainless steel surface treatment method: Towards the improvement of biocompatibility, Corros. Sci., 87(2014), p. 89. doi: 10.1016/j.corsci.2014.06.010
      [50]
      W. Han and F.Z. Fang, Fundamental aspects and recent developments in electropolishing, Int. J. Mach. Tools Manuf., 139(2019), p. 1. doi: 10.1016/j.ijmachtools.2019.01.001
      [51]
      J. Richards, C. Cremers, P. Fischer, and K. Schmidt, Corrosion studies on electro polished stainless steels for the use as metallic bipolar plates in PEMFC applications, Energy Procedia, 20(2012), p. 324. doi: 10.1016/j.egypro.2012.03.032
      [52]
      S.J. Lee and J.J. Lai, The effects of electropolishing (EP) process parameters on corrosion resistance of 316L stainless steel, J. Mater. Process. Technol., 140(2003), No. 1-3, p. 206. doi: 10.1016/S0924-0136(03)00785-4
      [53]
      W. Han and F.Z. Fang, Two-step electropolishing of 316L stainless steel in a sulfuric acid-free electrolyte, J. Mater. Process. Technol., 279(2020), art. No. 116558. doi: 10.1016/j.jmatprotec.2019.116558
      [54]
      A. Kumar, M. Ricketts, and S. Hirano, Ex situ evaluation of nanometer range gold coating on stainless steel substrate for automotive polymer electrolyte membrane fuel cell bipolar plate, J. Power Sources, 195(2010), No. 5, p. 1401. doi: 10.1016/j.jpowsour.2009.09.022
      [55]
      S.H. Wang, J. Peng, W.B. Lui, and J.S. Zhang, Performance of the gold-plated titanium bipolar plates for the light weight PEM fuel cells, J. Power Sources, 162(2006), No. 1, p. 486. doi: 10.1016/j.jpowsour.2006.06.084
      [56]
      X.J. Yan, J.B. Zhuang, N.B. Huang, C.H. Liang, H.T. Wang, and L.S. Xu, Corrosion behavior of SAMs modified silver-coated 316LSS as PEMFC bipolar plates, Key Eng. Mater., 645-646(2015), p. 1233. doi: 10.4028/www.scientific.net/KEM.645-646.1233
      [57]
      H.L. Wang and J.A. Turner, Electrochemical nitridation of a stainless steel for PEMFC bipolar plates, Int. J. Hydrogen Energy, 36(2011), No. 20, p. 13008. doi: 10.1016/j.ijhydene.2011.07.045
      [58]
      S. Pugal Mani and N. Rajendran, Corrosion and interfacial contact resistance behavior of electrochemically nitrided 316L SS bipolar plates for proton exchange membrane fuel cells, Energy, 133(2017), p. 1050. doi: 10.1016/j.energy.2017.05.086
      [59]
      D.M. Mattox, Physical vapor deposition (PVD) processes, Met. Finish., 99(2001), p. 409. doi: 10.1016/S0026-0576(01)85301-0
      [60]
      M. Aliofkhazraei and N. Ali, PVD technology in fabrication of micro- and nanostructured coatings, [in] Comprehensive Materials Processing, Elsevier, Amsterdam, 2014. p.49.
      [61]
      N.S. Mansoor, A. Fattah-Alhosseini, H. Elmkhah, and A. Shishehian, Comparison of the mechanical properties and electrochemical behavior of TiN and CrN single-layer and CrN/TiN multi-layer coatings deposited by PVD method on a dental alloy, Mater. Res. Express, 6(2020), No. 12, art. No. 126433. doi: 10.1088/2053-1591/ab640d
      [62]
      S.H. Song, B.K. Min, M.H. Hong, and T.Y. Kwon, Application of a novel CVD TiN coating on a biomedical Co–Cr alloy: An evaluation of coating layer and substrate characteristics, Materials, 13(2020), No. 5, art. No. 1145.
      [63]
      J.L. Wang, J.C. Sun, S. Li, Z.S. Wen, and S.J. Ji, Surface diffusion modification AISI 304SS stainless steel as bipolar plate material for proton exchange membrane fuel cell, Int. J. Hydrogen Energy, 37(2012), No. 1, p. 1140. doi: 10.1016/j.ijhydene.2011.02.072
      [64]
      D.G. Nam and H.C. Lee, Thermal nitridation of chromium electroplated AISI316L stainless steel for polymer electrolyte membrane fuel cell bipolar plate, J. Power Sources, 170(2007), No. 2, p. 268. doi: 10.1016/j.jpowsour.2007.04.054
      [65]
      Y. Hung, H. Tawfik, and D. Mahajan, Durability and characterization studies of polymer electrolyte membrane fuel cell’s coated aluminum bipolar plates and membrane electrode assembly, J. Power Sources, 186(2009), No. 1, p. 123. doi: 10.1016/j.jpowsour.2008.09.079
      [66]
      A. Gago, A. Ansar, N. Wagner, J. Arnold, and K. Friedrich, Titanium coatings deposited by thermal spraying for bipolar plates of PEM electrolysers, [in] The 64th Annual Meeting of the International Society of Electrochemistry, Queretaro, 2013, p. 7.
      [67]
      K.M. El-Khatib, M.O. Abou Helal, A.A. El-Moneim, and H. Tawfik, Corrosion stability of SUS316L HVOF sprayed coatings as lightweight bipolar plate materials in PEM fuel cells, Anti-Corros. Methods Mater., 51(2004), No. 2, p. 136. doi: 10.1108/00035590410523238
      [68]
      H.B. Zhang, G.Q. Lin, M. Hou, L. Hu, Z.Y. Han, Y. Fu, Z.G. Shao, and B.L. Yi, CrN/Cr multilayer coating on 316L stainless steel as bipolar plates for proton exchange membrane fuel cells, J. Power Sources, 198(2012), p. 176. doi: 10.1016/j.jpowsour.2011.09.091
      [69]
      Y.J. Ren, C.R. Zhang, G.M. Liu, and C.L. Ceng, A review on corrosion and protection of metallic bipolar plates for proton exchange membrane fuel cell, Corros. Sci. Protetion Technol., 21(2009), p. 388.
      [70]
      Y. Fu, G.Q. Lin, M. Hou, B. Wu, Z.G. Shao, and B.L. Yi, Carbon-based films coated 316L stainless steel as bipolar plate for proton exchange membrane fuel cells, Int. J. Hydrogen Energy, 34(2009), No. 1, p. 405. doi: 10.1016/j.ijhydene.2008.10.068
      [71]
      K. Feng, Y. Shen, H.L. Sun, D.A. Liu, Q.Z. An, X. Cai, and P.K. Chu, Conductive amorphous carbon-coated 316L stainless steel as bipolar plates in polymer electrolyte membrane fuel cells, Int. J. Hydrogen Energy, 34(2009), No. 16, p. 6771. doi: 10.1016/j.ijhydene.2009.06.030
      [72]
      S.H. Lee, V.E. Pukha, V.E. Vinogradov, N. Kakati, S.H. Jee, S.B. Cho, and Y.S. Yoon, Nanocomposite-carbon coated at low-temperature: A new coating material for metallic bipolar plates of polymer electrolyte membrane fuel cells, Int. J. Hydrogen Energy, 38(2013), No. 33, p. 14284. doi: 10.1016/j.ijhydene.2013.08.013
      [73]
      L.X. Wang, J.C. Sun, P.B. Li, B. Jing, S. Li, Z.S. Wen, and S.J. Ji, Niobized AISI 304 stainless steel bipolar plate for proton exchange membrane fuel cell, J. Power Sources, 208(2012), p. 397. doi: 10.1016/j.jpowsour.2012.02.075
      [74]
      K.S. Weil, G. Xia, Z.G. Yang, and J.Y. Kim, Development of a niobium clad PEM fuel cell bipolar plate material, Int. J. Hydrogen Energy, 32(2007), No. 16, p. 3724. doi: 10.1016/j.ijhydene.2006.08.041
      [75]
      K. Feng, Z.G. Li, X. Cai, and P.K. Chu, Corrosion behavior and electrical conductivity of niobium implanted 316L stainless steel used as bipolar plates in polymer electrolyte membrane fuel cells, Surf. Coat. Technol., 205(2010), No. 1, p. 85. doi: 10.1016/j.surfcoat.2010.06.009
      [76]
      K. Feng, Y. Shen, J.M. Mai, D.A. Liu, and X. Cai, An investigation into nickel implanted 316L stainless steel as a bipolar plate for PEM fuel cell, J. Power Sources, 182(2008), No. 1, p. 145. doi: 10.1016/j.jpowsour.2008.03.088
      [77]
      M.C. Li, S.Z. Luo, C.L. Zeng, J.N. Shen, H.C. Lin, and C.N. Cao, Corrosion behavior of TiN coated type 316 stainless steel in simulated PEMFC environments, Corros. Sci., 46(2004), No. 6, p. 1369. doi: 10.1016/S0010-938X(03)00187-2
      [78]
      E.A. Cho, U.S. Jeon, S.A. Hong, I.H. Oh, and S.G. Kang, Performance of a 1 kW-class PEMFC stack using TiN-coated 316 stainless steel bipolar plates, J. Power Sources, 142(2005), No. 1-2, p. 177. doi: 10.1016/j.jpowsour.2004.10.032
      [79]
      Y. Wang and D.O. Northwood, An investigation into TiN-coated 316L stainless steel as a bipolar plate material for PEM fuel cells, J. Power Sources, 165(2007), No. 1, p. 293. doi: 10.1016/j.jpowsour.2006.12.034
      [80]
      Q.B. You, J. Xiong, T.N. Yang, T. Hua, Y.L. Huo, and J.B. Liu, Effect of cermet substrate characteristics on the microstructure and properties of TiAlN coatings, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 547. doi: 10.1007/s12613-020-2198-6
      [81]
      Y. Zhao, L. Wei, P.Y. Yi, and L.F. Peng, Influence of Cr–C film composition on electrical and corrosion properties of 316L stainless steel as bipolar plates for PEMFCs, Int. J. Hydrogen Energy, 41(2016), No. 2, p. 1142. doi: 10.1016/j.ijhydene.2015.10.047
      [82]
      T. Zhang and C.L. Zeng, Corrosion protection of 1Cr18Ni9Ti stainless steel by polypyrrole coatings in HCl aqueous solution, Electrochim. Acta, 50(2005), No. 24, p. 4721. doi: 10.1016/j.electacta.2005.01.049
      [83]
      S. Joseph, J.C. McClure, R. Chianelli, P. Pich, and P.J. Sebastian, Conducting polymer-coated stainless steel bipolar plates for proton exchange membrane fuel cells (PEMFC), Int. J. Hydrogen Energy, 30(2005), No. 12, p. 1339. doi: 10.1016/j.ijhydene.2005.04.011
      [84]
      M.A.L. García and M.A. Smit, Study of electrodeposited polypyrrole coatings for the corrosion protection of stainless steel bipolar plates for the PEM fuel cell, J. Power Sources, 158(2006), No. 1, p. 397. doi: 10.1016/j.jpowsour.2005.09.037
      [85]
      Y. Wang and D.O. Northwood, An investigation into polypyrrole-coated 316L stainless steel as a bipolar plate material for PEM fuel cells, J. Power Sources, 163(2006), No. 1, p. 500. doi: 10.1016/j.jpowsour.2006.09.048

    Catalog


    • /

      返回文章
      返回