留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 5
Apr.  2022

图(12)

数据统计

分享

计量
  • 文章访问数:  2170
  • HTML全文浏览量:  1145
  • PDF下载量:  176
  • 被引次数: 0
Na Li, Shuangquan Yang, Haosen Chen, Shuqiang Jiao,  and Weili Song, Mechano-electrochemical perspectives on flexible lithium-ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 1019-1036. https://doi.org/10.1007/s12613-022-2486-4
Cite this article as:
Na Li, Shuangquan Yang, Haosen Chen, Shuqiang Jiao,  and Weili Song, Mechano-electrochemical perspectives on flexible lithium-ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 1019-1036. https://doi.org/10.1007/s12613-022-2486-4
引用本文 PDF XML SpringerLink
特约综述

柔性锂离子电池的力学-电化学耦合设计进展

  • 通讯作者:

    宋维力    E-mail: weilis@bit.edu.cn

文章亮点

  • (1)系统地综述了柔性锂离子电池中柔性材料和结构设计的进展。
  • (2)系统地从力学和电化学角度总结了柔性锂离子电池评价方式。
  • (3)基于力-电化学耦合方面展望了力学变形对动力学过程的影响。
  • 随着可穿戴以及柔性电子设备的出现,柔性锂离子电池作为主要能量来源引起了广泛关注。因此,开发具有良好的灵活性、机械稳定性和高能量密度的柔性锂离子电池仍然是一个巨大的挑战。近年来,关于柔性锂离子电池的设计优化方法复杂多样,比如电极材料优化和结构设计。然而,理想的柔性锂离子电池的设计和评价方法必须同时考虑力学和电化学等多种关键影响因素。本文从力学和电化学角度综述了柔性锂离子电池的最新研究进展和面临的挑战。首先,从柔性材料和结构设计两个方面阐述了柔性锂离子电池设计方法的最新进展。其次,从几何参数、数值理论模拟以及动力学分析三方面综述了柔性锂离子电池的评价方式的研究进展。然后,基于现有柔性离子电池设计制造以及评价方法的研究进展,对柔性锂离子电池未来发展方向和存在的挑战进行了展望。最后,从基于动力学过程分析了力学变形与电极过程之间的关系。本综述和展望对柔性锂离子电池的发展具有重要意义,这有助于缩小实验室研究和工业化之间的差距。
  • Invited Review

    Mechano-electrochemical perspectives on flexible lithium-ion batteries

    + Author Affiliations
    • With the advent of flexible/wearable electronic devices, flexible lithium-ion batteries (LIBs) have attracted significant attention as optimal power source candidates. Flexible LIBs with good flexibility, mechanical stability, and high energy density are still an enormous challenge. In recent years, many complex and diverse design methods for flexible LIBs have been reported. The design and evaluation of ideal flexible LIBs must take into consideration both mechanical and electrochemical factors. In this review, the recent progress and challenges of flexible LIBs are reviewed from a mechano-electrochemical perspective. The recent progress in flexible LIB design is addressed concerning flexible material and configuration design. The mechanical and electrochemical evaluations of flexible LIBs are also summarized. Furthermore, mechano-electrochemical perspectives for the future direction of flexible LIBs are also discussed. Finally, the relationship between mechanical loading and the electrode process is analyzed from a mechano-electrochemical perspective. The evaluation of flexible LIBs should be based on mechano-electrochemical processes. Reviews and perspectives are of great significance to the design and practicality of flexible LIBs, which is contributed to bridging the gap between laboratory exploration and practical applications.
    • loading
    • [1]
      C. Li, M.M. Islam, J. Moore, J. Sleppy, C. Morrison, K. Konstantinov, S.X. Dou, C. Renduchintala, and J. Thomas, Wearable energy-smart ribbons for synchronous energy harvest and storage, Nat. Commun., 7(2016), art. No. 13319. doi: 10.1038/ncomms13319
      [2]
      A.E. Ostfeld, A.M. Gaikwad, Y. Khan, and A.C. Arias, High-performance flexible energy storage and harvesting system for wearable electronics, Sci. Rep., 6(2016), art. No. 26122. doi: 10.1038/srep26122
      [3]
      D. Chen and Q.B. Pei, Electronic muscles and skins: A review of soft sensors and actuators, Chem. Rev., 117(2017), No. 17, p. 11239. doi: 10.1021/acs.chemrev.7b00019
      [4]
      H. Nishide and K. Oyaizu, Toward flexible batteries, Science, 319(2008), No. 5864, p. 737. doi: 10.1126/science.1151831
      [5]
      Y.F. Zhao and J.C. Guo, Development of flexible Li-ion batteries for flexible electronics, InfoMat, 2(2020), No. 5, p. 866. doi: 10.1002/inf2.12117
      [6]
      L.F. Wang, M.M. Geng, X.N. Ding, C. Fang, Y. Zhang, S.S. Shi, Y. Zheng, K. Yang, C. Zhan, and X.D. Wang, Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 538. doi: 10.1007/s12613-020-2218-6
      [7]
      M. Li, J. Lu, Z.W. Chen, and K. Amine, 30 years of lithium-ion batteries, Adv. Mater., 30(2018), No. 33, art. No. 1800561. doi: 10.1002/adma.201800561
      [8]
      T. Tao, S.G. Lu, and Y. Chen, A review of advanced flexible lithium-ion batteries, Adv. Mater. Technol., 3(2018), No. 9, art. No. 1700375. doi: 10.1002/admt.201700375
      [9]
      Z.H. Fang, J. Wang, H.C. Wu, Q.Q. Li, S.S. Fan, and J.P. Wang, Progress and challenges of flexible lithium ion batteries, J. Power Sources, 454(2020), art. No. 227932. doi: 10.1016/j.jpowsour.2020.227932
      [10]
      E. Foreman, W. Zakri, M.H. Sanatimoghaddam, A. Modjtahedi, S. Pathak, A.G. Kashkooli, N.G. Garafolo, and S. Farhad, A review of inactive materials and components of flexible lithium-ion batteries, Adv. Sustainable Syst., 1(2017), No. 11, art. No. 1700061. doi: 10.1002/adsu.201700061
      [11]
      G.M. Zhou, F. Li, and H.M. Cheng, Progress in flexible lithium batteries and future prospects, Energy Environ. Sci., 7(2014), No. 4, p. 1307. doi: 10.1039/C3EE43182G
      [12]
      Y.H. Hu and X.L. Sun, Flexible rechargeable lithium ion batteries: Advances and challenges in materials and process technologies, J. Mater. Chem. A, 2(2014), No. 28, p. 10712. doi: 10.1039/C4TA00716F
      [13]
      J. Chang, Q.Y. Huang, Y. Gao, and Z.J. Zheng, Pathways of developing high-energy-density flexible lithium batteries, Adv. Mater., 33(2021), No. 46, art. No. 2170363. doi: 10.1002/adma.202170363
      [14]
      C.Y. Wang and G.G. Wallace, Flexible electrodes and electrolytes for energy storage, Electrochim. Acta, 175(2015), p. 87. doi: 10.1016/j.electacta.2015.04.067
      [15]
      Y. Li, R.H. Wang, Z.N. Guo, Z. Xiao, H.D. Wang, X.L. Luo, and H. Zhang, Emerging two-dimensional noncarbon nanomaterials for flexible lithium-ion batteries: Opportunities and challenges, J. Mater. Chem. A, 7(2019), No. 44, p. 25227. doi: 10.1039/C9TA09377J
      [16]
      B. Liu, J.G. Zhang, and G.Z. Shen, Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries, Nano Today, 11(2016), No. 1, p. 82. doi: 10.1016/j.nantod.2016.02.003
      [17]
      O. Nyamaa, D.H. Seo, J.S. Lee, H.M. Jeong, S.C. Huh, J.H. Yang, E. Dolgor, and J.P. Noh, High electrochemical performance silicon thin-film free-standing electrodes based on buckypaper for flexible lithium-ion batteries, Materials (Basel), 14(2021), No. 8, art. No. 2053.
      [18]
      Z. Gao, N.N. Song, Y.Y. Zhang, and X.D. Li, Cotton-textile-enabled, flexible lithium-ion batteries with enhanced capacity and extended lifespan, Nano Lett., 15(2015), No. 12, p. 8194. doi: 10.1021/acs.nanolett.5b03698
      [19]
      B. Liu, J. Zhang, X.F. Wang, G. Chen, D. Chen, C.W. Zhou, and G.Z. Shen, Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries, Nano Lett., 12(2012), No. 6, p. 3005. doi: 10.1021/nl300794f
      [20]
      J. Chen, L. Wen, R.P. Fang, D.W. Wang, H.M. Cheng, and F. Li, Stress release in high-capacity flexible lithium-ion batteries through nested wrinkle texturing of graphene, J. Energy Chem., 61(2021), p. 243. doi: 10.1016/j.jechem.2021.03.021
      [21]
      K. Rana, J. Singh, J.T. Lee, J.H. Park, and J.H. Ahn, Highly conductive freestanding graphene films as anode current collectors for flexible lithium-ion batteries, ACS Appl. Mater. Interfaces, 6(2014), No. 14, p. 11158. doi: 10.1021/am500996c
      [22]
      R.W. Mo, D. Rooney, K.N. Sun, and H.Y. Yang, 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery, Nat. Commun., 8(2017), art. No. 13949. doi: 10.1038/ncomms13949
      [23]
      X. Fang, C.F. Shen, M.Y. Ge, J.P. Rong, Y.H. Liu, A.Y. Zhang, F. Wei, and C.W. Zhou, High-power lithium ion batteries based on flexible and light-weight cathode of LiNi0.5Mn1.5O4/carbon nanotube film, Nano Energy, 12(2015), p. 43. doi: 10.1016/j.nanoen.2014.11.052
      [24]
      C.Z. Meng, C.H. Liu, and S.S. Fan, Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties, Electrochem. Commun., 11(2009), No. 1, p. 186. doi: 10.1016/j.elecom.2008.11.005
      [25]
      X.L. Jia, C.Z. Yan, Z. Chen, R.R. Wang, Q. Zhang, L. Guo, F. Wei, and Y.F. Lu, Direct growth of flexible LiMn2O4/CNT lithium-ion cathodes, Chem. Commun., 47(2011), No. 34, p. 9669. doi: 10.1039/c1cc13536h
      [26]
      K. Amin, Q.H. Meng, A. Ahmad, M. Cheng, M. Zhang, L.J. Mao, K. Lu, and Z.X. Wei, A carbonyl compound-based flexible cathode with superior rate performance and cyclic stability for flexible lithium-ion batteries, Adv. Mater., 30(2018), No. 4, art. No. 1703868. doi: 10.1002/adma.201703868
      [27]
      J.Y. Wan, J. Xie, X. Kong, Z. Liu, K. Liu, F.F. Shi, A. Pei, H. Chen, W. Chen, J. Chen, X.K. Zhang, L.Q. Zong, J.Y. Wang, L.Q. Chen, J. Qin, and Y. Cui, Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries, Nat. Nanotechnol., 14(2019), No. 7, p. 705. doi: 10.1038/s41565-019-0465-3
      [28]
      K.H. Choi, S.J. Cho, S.H. Kim, Y.H. Kwon, J.Y. Kim, and S.Y. Lee, Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium-ion batteries, Adv. Funct. Mater., 24(2014), No. 1, p. 44. doi: 10.1002/adfm.201301345
      [29]
      W. Liu, J. Chen, Z. Chen, K. Liu, G.M. Zhou, Y.M. Sun, M.S. Song, Z.N. Bao, and Y. Cui, Stretchable lithium-ion batteries enabled by device-scaled wavy structure and elastic-sticky separator, Adv. Energy Mater., 7(2017), No. 21, art. No. 1701076. doi: 10.1002/aenm.201701076
      [30]
      X.D. Wang, Y. Lu, D.S. Geng, L. Li, D. Zhou, H.Y. Ye, Y.C. Zhu, and R.M. Wang, Planar fully stretchable lithium-ion batteries based on a lamellar conductive elastomer, ACS Appl. Mater. Interfaces, 12(2020), No. 48, p. 53774. doi: 10.1021/acsami.0c15305
      [31]
      S.H. Kim, K.H. Choi, S.J. Cho, E.H. Kil, and S.Y. Lee, Mechanically compliant and lithium dendrite growth-suppressing composite polymer electrolytes for flexible lithium-ion batteries, J. Mater. Chem. A, 1(2013), No. 16, p. 4949. doi: 10.1039/c3ta10612h
      [32]
      C. Wang, R.J. Li, P. Chen, Y.S. Fu, X.Y. Ma, T. Shen, B.J. Zhou, K. Chen, J.J. Fu, X.F. Bao, W.W. Yan, and Y. Yang, Highly stretchable, non-flammable and notch-insensitive intrinsic self-healing solid-state polymer electrolyte for stable and safe flexible lithium batteries, J. Mater. Chem. A, 9(2021), No. 8, p. 4758. doi: 10.1039/D0TA10745J
      [33]
      H. Yim, S.H. Yu, S.H. Baek, Y.E. Sung, and J.W. Choi, Directly integrated all-solid-state flexible lithium batteries on polymer substrate, J. Power Sources, 455(2020), art. No. 227978. doi: 10.1016/j.jpowsour.2020.227978
      [34]
      J.Y. Rao, N.S. Liu, Z. Zhang, J. Su, L.Y. Li, L. Xiong, and Y.H. Gao, All-fiber-based quasi-solid-state lithium-ion battery towards wearable electronic devices with outstanding flexibility and self-healing ability, Nano Energy, 51(2018), p. 425. doi: 10.1016/j.nanoen.2018.06.067
      [35]
      G.Y. Qian, X.B. Liao, Y.X. Zhu, F. Pan, X. Chen, and Y. Yang, Designing flexible lithium-ion batteries by structural engineering, ACS Energy Lett., 4(2019), No. 3, p. 690. doi: 10.1021/acsenergylett.8b02496
      [36]
      M. Koo, K.I. Park, S.H. Lee, M. Suh, D.Y. Jeon, J.W. Choi, K. Kang, and K.J. Lee, Bendable inorganic thin-film battery for fully flexible electronic systems, Nano Lett., 12(2012), No. 9, p. 4810. doi: 10.1021/nl302254v
      [37]
      Y.H. Kwon, S.W. Woo, H.R. Jung, H.K. Yu, K. Kim, B.H. Oh, S. Ahn, S.Y. Lee, S.W. Song, J. Cho, H.C. Shin, and J.Y. Kim, Cable-type flexible lithium ion battery based on hollow multi-helix electrodes, Adv. Mater., 24(2012), No. 38, p. 5192. doi: 10.1002/adma.201202196
      [38]
      S.Y. Lee, K.H. Choi, W.S. Choi, Y.H. Kwon, H.R. Jung, H.C. Shin, and J.Y. Kim, Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries, Energy Environ. Sci., 6(2013), No. 8, p. 2414. doi: 10.1039/c3ee24260a
      [39]
      Y.N. Xu, K. Wang, J.W. Han, C. Liu, Y.B. An, Q.H. Meng, C. Li, X. Zhang, X.Z. Sun, Y.S. Zhang, L.J. Mao, Z.X. Wei, and Y.W. Ma, Scalable production of wearable solid-state Li-ion capacitors from N-doped hierarchical carbon, Adv. Mater., 32(2020), No. 45, art. No. 2005531. doi: 10.1002/adma.202005531
      [40]
      Z.M. Song, X. Wang, C. Lv, Y.H. An, M.B. Liang, T. Ma, D. He, Y.J. Zheng, S.Q. Huang, H.Y. Yu, and H.Q. Jiang, Kirigami-based stretchable lithium-ion batteries, Sci. Rep., 5(2015), art. No. 10988. doi: 10.1038/srep10988
      [41]
      Y.H. Bao, G.Q. Hong, Y. Chen, J. Chen, H.S. Chen, W.L. Song, and D.N. Fang, Customized kirigami electrodes for flexible and deformable lithium-ion batteries, ACS Appl. Mater. Interfaces, 12(2020), No. 1, p. 780. doi: 10.1021/acsami.9b18232
      [42]
      M. Park, H. Cha, Y. Lee, J. Hong, S.Y. Kim, and J. Cho, Postpatterned electrodes for flexible node-type lithium-ion batteries, Adv. Mater., 29(2017), No. 11, art. No. 1605773. doi: 10.1002/adma.201605773
      [43]
      F.W. Xiang, F. Cheng, Y.J. Sun, X.P. Yang, W. Lu, R. Amal, and L.M. Dai, Recent advances in flexible batteries: From materials to applications, Nano Res., 2021. DOI: 10.1007/s12274-021-3820-2.
      [44]
      L.J. Mao, Q.H. Meng, A. Ahmad, and Z.X. Wei, Mechanical analyses and structural design requirements for flexible energy storage devices, Adv. Energy Mater., 7(2017), No. 23, art. No. 1700535. doi: 10.1002/aenm.201700535
      [45]
      D. Chen, Z. Lou, K. Jiang, and G.Z. Shen, Device configurations and future prospects of flexible/stretchable lithium-ion batteries, Adv. Funct. Mater., 28(2018), No. 51, art. No. 1805596. doi: 10.1002/adfm.201805596
      [46]
      H. Jeon, I. Cho, H. Jo, K. Kim, M.H. Ryou, and Y.M. Lee, Highly rough copper current collector: Improving adhesion property between a silicon electrode and current collector for flexible lithium-ion batteries, RSC Adv., 7(2017), No. 57, p. 35681. doi: 10.1039/C7RA04598K
      [47]
      Z.A. Zhang, Q. Li, K. Zhang, W. Chen, Y.Q. Lai, and J. Li, Titanium-dioxide-grafted carbon paper with immobilized sulfur as a flexible free-standing cathode for superior lithium–sulfur batteries, J. Power Sources, 290(2015), p. 159. doi: 10.1016/j.jpowsour.2015.05.010
      [48]
      S.W. Kim and K.Y. Cho, Current collectors for flexible lithium ion batteries: A review of materials, J. Electrochem. Sci. Technol, 6(2015), No. 1, p. 1. doi: 10.33961/JECST.2015.6.1.1
      [49]
      Y.F. Zhang, F.Z. Li, K. Yang, X. Liu, Y.G. Chen, Z.Q. Lao, K.C. Mai, and Z.S. Zhang, Polymer molecular engineering enables rapid electron/ion transport in ultra-thick electrode for high-energy-density flexible lithium-ion battery, Adv. Funct. Mater., 31(2021), No. 19, art. No. 2100434. doi: 10.1002/adfm.202100434
      [50]
      H.M. Shi, G.L. Wen, Y. Nie, G.H. Zhang, and H.G. Duan, Flexible 3D carbon cloth as a high-performing electrode for energy storage and conversion, Nanoscale, 12(2020), No. 9, p. 5261. doi: 10.1039/C9NR09785F
      [51]
      L. Hu, H. Wu, F.L. Mantia, Y. Yang, and Y. Cui, Thin, flexible secondary Li-ion paper batteries, ACS Nano, 4(2010), No. 10, p. 5843. doi: 10.1021/nn1018158
      [52]
      Y. Shi, L. Wen, G.M. Zhou, J. Chen, S.F. Pei, K. Huang, H.M. Cheng, and F. Li, Graphene-based integrated electrodes for flexible lithium ion batteries, 2D Mater., 2(2015), No. 2, art. No. 024004. doi: 10.1088/2053-1583/2/2/024004
      [53]
      Y.H. Bao, Y. Liu, Y.D. Kuang, D.N. Fang, and T. Li, 3D-printed highly deformable electrodes for flexible lithium ion batteries, Energy Storage Mater., 33(2020), p. 55. doi: 10.1016/j.ensm.2020.07.010
      [54]
      M.H. Park, M. Noh, S. Lee, M. Ko, S. Chae, S. Sim, S. Choi, H. Kim, H. Nam, S. Park, and J. Cho, Flexible high-energy Li-ion batteries with fast-charging capability, Nano Lett., 14(2014), No. 7, p. 4083. doi: 10.1021/nl501597s
      [55]
      G.P. Fu, M.D. Soucek, and T. Kyu, Fully flexible lithium ion battery based on a flame retardant, solid-state polymer electrolyte membrane, Solid State Ionics, 320(2018), p. 310. doi: 10.1016/j.ssi.2018.03.021
      [56]
      S. Xu, Y.H. Zhang, J. Cho, J. Lee, X. Huang, L. Jia, J.A. Fan, Y.W. Su, J. Su, H.G. Zhang, H.Y. Cheng, B.W. Lu, C.J. Yu, C. Chuang, T.I. Kim, T. Song, K. Shigeta, S. Kang, C. Dagdeviren, I. Petrov, P.V. Braun, Y.G. Huang, U. Paik, and J.A. Rogers, Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems, Nat. Commun., 4(2013), art. No. 1543. doi: 10.1038/ncomms2553
      [57]
      H. An, J. Mike, K.A. Smith, L. Swank, Y.H. Lin, S.L. Pesek, R. Verduzco, and J.L. Lutkenhaus, Highly flexible self-assembled V2O5 cathodes enabled by conducting diblock copolymers, Sci. Rep., 5(2015), art. No. 14166. doi: 10.1038/srep14166
      [58]
      D.H. Kim, J.H. Ahn, W.M. Choi, H.S. Kim, T.H. Kim, J.Z. Song, Y.Y. Huang, Z.J. Liu, C. Lu, and J.A. Rogers, Stretchable and foldable silicon integrated circuits, Science, 320(2008), No. 5875, p. 507. doi: 10.1126/science.1154367
      [59]
      H.L. Luo, J.E. Zhu, E. Sahraei, and Y. Xia, Adhesion strength of the cathode in lithium-ion batteries under combined tension/shear loadings, RSC Adv., 8(2018), No. 8, p. 3996. doi: 10.1039/C7RA12382E
      [60]
      A.J. Blake, R.R. Kohlmeyer, L.F. Drummy, J.S. Gutiérrez-Kolar, J. Carpena-Núñez, B. Maruyama, R. Shahbazian-Yassar, H. Huang, and M.F. Durstock, Creasable batteries: Understanding failure modes through dynamic electrochemical mechanical testing, ACS Appl. Mater. Interfaces, 8(2016), No. 8, p. 5196. doi: 10.1021/acsami.5b11175
      [61]
      H. Cha, Y. Lee, J. Kim, M. Park, and J. Cho, Flexible 3D interlocking lithium-ion batteries, Adv. Energy Mater., 8(2018), No. 30, art. No. 1801917. doi: 10.1002/aenm.201801917
      [62]
      J.Q. He, C.H. Lu, H.B. Jiang, F. Han, X. Shi, J.X. Wu, L.Y. Wang, T.Q. Chen, J.J. Wang, Y. Zhang, H. Yang, G.Q. Zhang, X.M. Sun, B.J. Wang, P.N. Chen, Y.G. Wang, Y.Y. Xia, and H.S. Peng, Scalable production of high-performing woven lithium-ion fibre batteries, Nature, 597(2021), No. 7874, p. 57. doi: 10.1038/s41586-021-03772-0
      [63]
      C.M. Shi, T.Y. Wang, X.B. Liao, B.Y. Qie, P.F. Yang, M.J. Chen, X. Wang, A. Srinivasan, Q. Cheng, Q. Ye, A.C. Li, X. Chen, and Y. Yang, Accordion-like stretchable Li-ion batteries with high energy density, Energy Storage Mater., 17(2019), p. 136. doi: 10.1016/j.ensm.2018.11.019
      [64]
      W. Weng, Q. Sun, Y. Zhang, S.S. He, Q.Q. Wu, J. Deng, X. Fang, G.Z. Guan, J. Ren, and H.S. Peng, A gum-like lithium-ion battery based on a novel arched structure, Adv. Mater., 27(2015), No. 8, p. 1363. doi: 10.1002/adma.201405127
      [65]
      Z.M. Song, T. Ma, R. Tang, Q. Cheng, X. Wang, D. Krishnaraju, R. Panat, C.K. Chan, H.Y. Yu, and H.Q. Jiang, Origami lithium-ion batteries, Nat. Commun., 5(2014), art. No. 3140. doi: 10.1038/ncomms4140
      [66]
      F.N. Mo, G.J. Liang, Z.D. Huang, H.F. Li, D.H. Wang, and C.Y. Zhi, An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties, Adv. Mater., 32(2020), No. 5, art. No. 1902151. doi: 10.1002/adma.201902151
      [67]
      Y.S. Chen, K.H. Chang, C.C. Hu, and T.T. Cheng, Performance comparisons and resistance modeling for multi-segment electrode designs of power-oriented lithium-ion batteries, Electrochim. Acta, 55(2010), No. 22, p. 6433. doi: 10.1016/j.electacta.2010.06.041
      [68]
      Y. Zhang, Y.H. Wang, L. Wang, C.M. Lo, Y. Zhao, Y.D. Jiao, G.F. Zheng, and H.S. Peng, A fiber-shaped aqueous lithium ion battery with high power density, J. Mater. Chem. A, 4(2016), No. 23, p. 9002. doi: 10.1039/C6TA03477B
      [69]
      J. Ren, Y. Zhang, W.Y. Bai, X.L. Chen, Z.T. Zhang, X. Fang, W. Weng, Y.G. Wang, and H.S. Peng, Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance, Angew. Chem. Int. Ed., 53(2014), No. 30, p. 7864. doi: 10.1002/anie.201402388
      [70]
      G.Y. Qian, B. Zhu, X.B. Liao, H.W. Zhai, A. Srinivasan, N.J. Fritz, Q. Cheng, M.Q. Ning, B.Y. Qie, Y. Li, S.L. Yuan, J. Zhu, X. Chen, and Y. Yang, Bioinspired, spine-like, flexible, rechargeable lithium-ion batteries with high energy density, Adv. Mater., 30(2018), No. 12, art. No. 1704947. doi: 10.1002/adma.201704947
      [71]
      X.B. Liao, C.M. Shi, T.Y. Wang, B.Y. Qie, Y.L. Chen, P.F. Yang, Q. Cheng, H.W. Zhai, M.J. Chen, X. Wang, X. Chen, and Y. Yang, High-energy-density foldable battery enabled by zigzag-like design, Adv. Energy Mater., 9(2019), No. 4, art. No. 1802998. doi: 10.1002/aenm.201802998
      [72]
      N. Li, H.S. Chen, S.Q. Yang, H. Yang, S.Q. Jiao, and W.L. Song, Bidirectional planar flexible snake-origami batteries, Adv. Sci., 8(2021), No. 20, art. No. 2101372. doi: 10.1002/advs.202101372
      [73]
      C.J. Xu, L. Weng, L. Ji, and J.Q. Zhou, An analytical model for the fracture behavior of the flexible lithium-ion batteries under bending deformation, Eur. J. Mech. A/Solids, 73(2019), p. 47. doi: 10.1016/j.euromechsol.2018.06.012
      [74]
      L.B. Jiang, J.J. Zhao, and Y.W. Gao, Mechanical analysis of a flexible cable battery using the finite element model, AIP Adv., 9(2019), No. 1, art. No. 015013. doi: 10.1063/1.5082195
      [75]
      C.J. Xu, L. Weng, B.B. Chen, L. Ji, J.Q. Zhou, R. Cai, and S.L. Lu, Modeling of the ratcheting behavior in flexible electrodes during cyclic deformation, J. Power Sources, 446(2020), art. No. 227353. doi: 10.1016/j.jpowsour.2019.227353
      [76]
      A. Chen, X. Guo, S. Yang, G.J. Liang, Q. Li, Z. Chen, Z.D. Huang, Q. Yang, C.P. Han, and C.Y. Zhi, Human joint-inspired structural design for a bendable/foldable/stretchable/twistable battery: Achieving multiple deformabilities, Energy Environ. Sci., 14(2021), No. 6, p. 3599. doi: 10.1039/D1EE00480H
      [77]
      D.P. Qi, Z.Y. Liu, Y. Liu, W.R. Leow, B.W. Zhu, H. Yang, J.C. Yu, W. Wang, H. Wang, S.Y. Yin, and X.D. Chen, Suspended wavy graphene microribbons for highly stretchable microsupercapacitors, Adv. Mater., 27(2015), No. 37, p. 5559. doi: 10.1002/adma.201502549
      [78]
      H.F. Li, Z.J. Tang, Z.X. Liu, and C.Y. Zhi, Evaluating flexibility and wearability of flexible energy storage devices, Joule, 3(2019), No. 3, p. 613. doi: 10.1016/j.joule.2019.01.013
      [79]
      J.G. Tu, W.L. Song, H.P. Lei, Z.J. Yu, L.L. Chen, M.Y. Wang, and S.Q. Jiao, Nonaqueous rechargeable aluminum batteries: Progresses, challenges, and perspectives, Chem. Rev., 121(2021), No. 8, p. 4903. doi: 10.1021/acs.chemrev.0c01257

    Catalog


    • /

      返回文章
      返回