留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 10
Oct.  2022

图(8)  / 表(7)

数据统计

分享

计量
  • 文章访问数:  7255
  • HTML全文浏览量:  3242
  • PDF下载量:  167
  • 被引次数: 0
Patrícia Metolina, Tiago Ramos Ribeiro,  and Roberto Guardani, Hydrogen-based direct reduction of industrial iron ore pellets: Statistically designed experiments and computational simulation, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp. 1908-1921. https://doi.org/10.1007/s12613-022-2487-3
Cite this article as:
Patrícia Metolina, Tiago Ramos Ribeiro,  and Roberto Guardani, Hydrogen-based direct reduction of industrial iron ore pellets: Statistically designed experiments and computational simulation, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp. 1908-1921. https://doi.org/10.1007/s12613-022-2487-3
引用本文 PDF XML SpringerLink
研究论文

工业铁矿石球团的氢基直接还原:统计设计实验与计算模拟

  • 通讯作者:

    Patrícia Metolina    E-mail: pmetolina@usp.br

  • 氢基直接还原还原被认为是减少炼钢行业人为 CO2 排放的重要发展方向之一,本文使用 Doehlert 实验设计研究了工业生产的赤铁矿球团与 H2 的直接还原,以评估球团直径 (10.5–16.5 mm)、孔隙率 (0.36–0.44) 和温度 (600–1200°C)的影响。观察到温度和颗粒大小之间的强烈交互作用,表明这些变量不能独立考虑。温度的升高和颗粒尺寸的减小有利于降低率,而孔隙率没有显示出相关的影响。还原过程中粒料尺寸的变化可以忽略不计,除非是在高温下由于裂纹形成,才会产生较大的尺寸变化。高温下机械强度的显着降低表明了氢基直接还原直接还原工艺操作最高温度为 900°C。本文使用改进的晶粒模型来模拟三个连续的非催化气固反应,同时考虑到了不同的颗粒尺寸和孔隙率,以及在 800 到 900°C 的反应过程中的变化,实现了良好的预测能力。然而,对于其他温度,在建模中还必须考虑不同的结构变化机理。这些结果对开发用于无二氧化碳炼钢技术的球团矿做出了重大贡献。
  • Research Article

    Hydrogen-based direct reduction of industrial iron ore pellets: Statistically designed experiments and computational simulation

    + Author Affiliations
    • As part of efforts to reduce anthropogenic CO2 emissions by the steelmaking industry, this study investigated the direct reduction of industrially produced hematite pellets with H2 using the Doehlert experimental design to evaluate the effect of pellet diameter (10.5–16.5 mm), porosity (0.36–0.44), and temperature (600–1200°C). A strong interactive effect between temperature and pellet size was observed, indicating that these variables cannot be considered independently. The increase in temperature and decrease in pellet size considerably favor the reduction rate, while porosity did not show a relevant effect. The change in pellet size during the reduction was negligible, except at elevated temperatures due to crack formation. A considerable decrease in mechanical strength at high temperatures suggests a maximum process operating temperature of 900°C. Good predictive capacity was achieved using the modified grain model to simulate the three consecutive non-catalytic gas–solid reactions, considering different pellet sizes and porosities, changes during the reaction from 800 to 900°C. However, for other temperatures, different mechanisms of structural modifications must be considered in the modeling. These results represent significant contributions to the development of ore pellets for CO2-free steelmaking technology.
    • loading
    • Supplementary Informations12613-022-2487-3.docx
    • [1]
      G. Froment, K. Bischoff, and Juray de Wilde, Chemical Reactor Analysis and Design, 3rd ed., Wiley, Hoboken, 2010.
      [2]
      S. Kimura, J. Nakagawa, S. Tone, and T. Otake, Non-isothermalbehavior of gas–solid reactions based on the volume reaction model, J. Chem. Eng. Jpn., 15(1982), No. 2, p. 115. doi: 10.1252/jcej.15.115
      [3]
      M.E. Kinaci, T. Lichtenegger, and S. Schneiderbauer, A CFD-DEM model for the simulation of direct reduction of iron-ore in fluidized beds, Chem. Eng. Sci., 227(2020), art. No. 115858. doi: 10.1016/j.ces.2020.115858
      [4]
      Midrex Technologies Inc., 2019 World Direct Reduction Statistics, Midrex Technologies Inc., 2020 [2021-01-20]. https://www.midrex.com/wp-content/uploads/Midrex-STATSbook2019Final.pdf
      [5]
      IEA, Iron and Steel Technology Roadmap, IEA, Paris, 2020 [2021-08-26]. https://www.iea.org/reports/iron-and-steel-technology-roadmap
      [6]
      European Commission, Energy Efficiency and CO2 Reduction in the Iron and Steel Industry, European Commission Joint Research Centre Institute for Energy and Transport, 2021 [2021-08-26]. http://setis.ec.europa.eu/technologies/energy-intensive-industries/energy-effciency-and-co2-reduction-iron-steel-industry
      [7]
      L. Holappa, A general vision for reduction of energy consumption and CO2 emissions from the steel industry, Metals, 10(2020), No. 9, art. No. 1117. doi: 10.3390/met10091117
      [8]
      F. Patisson and O. Mirgaux, Hydrogen ironmaking: How it works, Metals, 10(2020), No. 7, art. No. 922. doi: 10.3390/met10070922
      [9]
      A. Bonalde, A. Henriquez, and M. Manrique, Kinetic analysis of the iron oxide reduction using hydrogen–carbon monoxide mixtures as reducing agent, ISIJ Int., 45(2005), No. 9, p. 1255. doi: 10.2355/isijinternational.45.1255
      [10]
      A. Hammam, Y. Li, H. Nie, et al., Isothermal and non-isothermal reduction behaviors of iron ore compacts in pure hydrogen atmosphere and kinetic analysis, Min. Metall. Explor., 38(2021), No. 1, p. 81. doi: 10.1007/s42461-020-00317-3
      [11]
      H.B. Zuo, C. Wang, J.J. Dong, K.X. Jiao, and R.S. Xu, Reduction kinetics of iron oxide pellets with H2 and CO mixtures, Int. J. Miner. Metall. Mater., 22(2015), No. 7, p. 688. doi: 10.1007/s12613-015-1123-x
      [12]
      D. Spreitzer and J. Schenk, Reduction of iron oxides with hydrogen—A review, Steel Res. Int., 90(2019), No. 10, art. No. 1900108. doi: 10.1002/srin.201900108
      [13]
      H. Ahn and S. Choi, A comparison of the shrinking core model and the grain model for the iron ore pellet indurator simulation, Comput. Chem. Eng., 97(2017), p. 13. doi: 10.1016/j.compchemeng.2016.11.005
      [14]
      A.Z. Ghadi, M.S. Valipour, and M. Biglari, Mathematical modelling of wustite pellet reduction: Grain model in comparison with USCM, Ironmaking Steelmaking, 43(2016), No. 6, p. 418. doi: 10.1080/03019233.2015.1135578
      [15]
      T. Melchiori and P. Canu, Improving the quantitative description of reacting porous solids: Critical analysis of the shrinking core model by comparison to the generalized grain model, Ind. Eng. Chem. Res., 53(2014), No. 22, p. 8980. doi: 10.1021/ie403030g
      [16]
      J. Szekely and J.W. Evans, A structural model for gas–solid reactions with a moving boundary-II, Chem. Eng. Sci., 26(1971), No. 11, p. 1901. doi: 10.1016/0009-2509(71)86033-5
      [17]
      B.M. Sloman, C.P. Please, and R.A. van Gorder, Homogenization of a shrinking core model for gas–solid reactions in granular particles, SIAM J. Appl. Math., 79(2019), No. 1, p. 177. doi: 10.1137/17M1159634
      [18]
      A. Zare Ghadi, M.S. Valipour, S.M. Vahedi, and H.Y. Sohn, A review on the modeling of gaseous reduction of iron oxide pellets, Steel Res. Int., 91(2020), No. 1, art. No. 1900270. doi: 10.1002/srin.201900270
      [19]
      A. Pineau, N. Kanari, and I. Gaballah, Kinetics of reduction of iron oxides by H2: Part II. Low temperature reduction of magnetite, Thermochim. Acta, 456(2007), No. 2, p. 75. doi: 10.1016/j.tca.2007.01.014
      [20]
      A. Pineau, N. Kanari, and I. Gaballah, Kinetics of reduction of iron oxides by H2, Thermochim. Acta, 447(2006), No. 1, p. 89. doi: 10.1016/j.tca.2005.10.004
      [21]
      Z.Y. Chen, J. Dang, X.J. Hu, and H.Y. Yan, Reduction kinetics of hematite powder in hydrogen atmosphere at moderate temperatures, Metals, 8(2018), No. 10, art. No. 751. doi: 10.3390/met8100751
      [22]
      K. Piotrowski, K. Mondal, T. Wiltowski, P. Dydo, and G. Rizeg, Topochemical approach of kinetics of the reduction of hematite to wüstite, Chem. Eng. J., 131(2007), No. 1-3, p. 73. doi: 10.1016/j.cej.2006.12.024
      [23]
      M. Bahgat and M.H. Khedr, Reduction kinetics, magnetic behavior and morphological changes during reduction of magnetite single crystal, Mater. Sci. Eng. B, 138(2007), No. 3, p. 251. doi: 10.1016/j.mseb.2007.01.029
      [24]
      D.H. Liu, X.Z. Wang, J.L. Zhang, et al., Study on the controlling steps and reduction kinetics of iron oxide briquettes with CO–H2 mixtures, Metall. Res. Technol., 114(2017), No. 6, art. No. 611. doi: 10.1051/metal/2017072
      [25]
      T. Murakami, H. Wakabayashi, D. Maruoka, and E. Kasai, Effect of hydrogen concentration in reducing gas on the changes in mineral phases during reduction of iron ore sinter, ISIJ Int., 60(2020), No. 12, p. 2678. doi: 10.2355/isijinternational.ISIJINT-2020-180
      [26]
      M.H. Bai, H. Long, L.J. Li, et al., Kinetics of iron ore pellets reduced by H2N2 under non-isothermal condition, Int. J. Hydrogen Energy, 43(2018), No. 32, p. 15586. doi: 10.1016/j.ijhydene.2018.06.116
      [27]
      A. Niksiar and A. Rahimi, A study on deviation of noncatalytic gas–solid reaction models due to heat effects and changing of solid structure, Powder Technol., 193(2009), No. 1, p. 101. doi: 10.1016/j.powtec.2009.02.012
      [28]
      E. Nyankson and L. Kolbeinsen, Kinetics of direct iron ore reduction with CO–H2 gas mixtures, Int. J. Eng. Res. Technol., 4(2015), No. 4, p. 934. doi: 10.17577/IJERTV4IS040955
      [29]
      M.S. Valipour, Mathematical modeling of a non-catalytic gas–solid reaction: hematite pellet reduction with syngas, Trans. Chem. Chem. Eng. C, 16(2009), No. 2, p. 108.
      [30]
      M.S. Valipour, M.Y. Motamed Hashemi, and Y. Saboohi, Mathematical modeling of the reaction in an iron ore pellet using a mixture of hydrogen, water vapor, carbon monoxide and carbon dioxide: An isothermal study, Adv. Powder Technol., 17(2006), No. 3, p. 277. doi: 10.1163/156855206777213375
      [31]
      M. Kazemi, M.S. Pour, and S.C. Du, Experimental and modeling study on reduction of hematite pellets by hydrogen gas, Metall. Mater. Trans. B, 48(2017), No. 2, p. 1114. doi: 10.1007/s11663-016-0895-3
      [32]
      S.M.M. Nouri, H. Ale Ebrahim, and E. Jamshidi, Simulation of direct reduction reactor by the grain model, Chem. Eng. J., 166(2011), No. 2, p. 704. doi: 10.1016/j.cej.2010.11.025
      [33]
      A. Ranzani da Costa, D. Wagner, and F. Patisson, Modelling a new, low CO2 emissions, hydrogen steelmaking process, J. Cleaner Prod., 46(2013), p. 27. doi: 10.1016/j.jclepro.2012.07.045
      [34]
      D.H. Doehlert, Uniform shell designs, Appl. Stat., 19(1970), No. 3, art. No. 231. doi: 10.2307/2346327
      [35]
      M. Sautour, A. Rouget, P. Dantigny, C. Divies, and M. Bensoussan, Application of Doehlert design to determine the combined effects of temperature, water activity and pH on conidial germination of Penicillium chrysogenum, J. Appl. Microbiol., 91(2001), No. 5, p. 900. doi: 10.1046/j.1365-2672.2001.01449.x
      [36]
      M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, and L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76(2008), No. 5, p. 965. doi: 10.1016/j.talanta.2008.05.019
      [37]
      J. Szekely, J. W. Evans, and H. Y. Sohn, Gas–Solid Reactions, 1st ed., Academic Press, New York, 1976.
      [38]
      J. Welty, C.E. Wicks, G. Rorrer, and R.E. Wilson, Fundamentals of Momentum, Heat and Mass Transfer, 5th ed., Wiley, Corvallis, 2007
      [39]
      C.R. Wilke and P. Chang, Correlation of diffusion coefficients in dilute solutions, AIChE J., 1(1955), No. 2, p. 264. doi: 10.1002/aic.690010222
      [40]
      A. Rahimi and A. Niksiar, A general model for moving-bed reactors with multiple chemical reactions part I: Model formulation, Int. J. Miner. Process., 124(2013), p. 58. doi: 10.1016/j.minpro.2013.02.015
      [41]
      T. Akiyama, R. Takahashi, and J.I. Yagi, Measurements of heat transfer coefficients between gas and particles for a single sphere and for moving beds, ISIJ Int., 33(1993), No. 6, p. 703. doi: 10.2355/isijinternational.33.703
      [42]
      T. Akiyama, H. Ohta, R. Takahashi, Y. Waseda, and J.I. Yagi, Measurement and modeling of thermal conductivity for dense iron oxide and porous iron ore aggliomerates in stepwise reduction, ISIJ Int., 32(1992), No. 7, p. 829. doi: 10.2355/isijinternational.32.829
      [43]
      M. Iljana, A. Kemppainen, T. Paananen, et al., Effect of adding limestone on the metallurgical properties of iron ore pellets, Int. J. Miner. Process., 141(2015), p. 34. doi: 10.1016/j.minpro.2015.06.004
      [44]
      Z.C. Huang, L.Y. Yi, and T. Jiang, Mechanisms of strength decrease in the initial reduction of iron ore oxide pellets, Powder Technol., 221(2012), p. 284. doi: 10.1016/j.powtec.2012.01.013
      [45]
      L.Y. Yi, Z.C. Huang, T. Jiang, R.H. Zhong, and Z.K. Liang, Iron ore pellet disintegration mechanism in simulated shaft furnace conditions, Powder Technol., 317(2017), p. 89. doi: 10.1016/j.powtec.2017.04.056
      [46]
      A. Heidari, N. Niknahad, M. Iljana, and T. Fabritius, A review on the kinetics of iron ore reduction by hydrogen, Materials, 14(2021), No. 24, art. No. 7540. doi: 10.3390/ma14247540
      [47]
      M. Mizutani, T. Orimoto, T. Nishimura, and K. Higuchi, In-situ evaluation for crack generation behavior of iron ore agglomeration during low temperature reduction by applying acoustic emission method and analysis of reduction disintegration behavior, Nippon Steel Tech. Rep., 2020, No. 123, p. 48.
      [48]
      Y. Takenaka, Y. Kimura, K. Narita, and D. Kaneko, Mathematical model of direct reduction shaft furnace and its application to actual operations of a model plant, Comput. Chem. Eng., 10(1986), No. 1, p. 67. doi: 10.1016/0098-1354(86)85047-5

    Catalog


    • /

      返回文章
      返回