Cite this article as:

Zichuan Zhao, Jue Tang, Mansheng Chu, Xindong Wang, Aijun Zheng, Xiaoai Wang, and Yang Li, Direct reduction swelling behavior of pellets in hydrogen-based shaft furnaces under typical atmospheres, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp.1891-1900. https://dx.doi.org/10.1007/s12613-022-2494-4
Zichuan Zhao, Jue Tang, Mansheng Chu, Xindong Wang, Aijun Zheng, Xiaoai Wang, and Yang Li, Direct reduction swelling behavior of pellets in hydrogen-based shaft furnaces under typical atmospheres, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp.1891-1900. https://dx.doi.org/10.1007/s12613-022-2494-4
引用本文 PDF XML SpringerLink

气基竖炉典型气氛下球团直接还原膨胀行为

摘要: 氢基竖炉工艺因其低碳排放而受到越来越多的关注,含铁炉料的还原行为对其运行有着显著的影响。本文深入研究了典型氢冶金条件下还原度、温度和气氛对球团膨胀行为的影响。结果表明,球团在还原初期迅速膨胀,然后在还原度约为40%时达到最大还原膨胀指数(RSI)。还原过程中氧化铁的结晶转变是球团膨胀的主要原因。在850–1050°C范围内,RSI随着温度的升高而显著增加,在100%H2的气体成分中,最大RSI从6.66%增加到25.0%。随着还原温度的升高,球团受到更大的热应力,导致体积增加。在950°C的温度下,随着H2在还原气中的体积比从55%增加到100%,最大RSI从19.78%下降到17.35%。金属铁倾向于以层状结构生长而不是铁晶须形貌,因此,颗粒内部变得规则,RSI降低。总之,控制合理的温度和增加还原气H2比例是降低球团RSI的有效方法。

 

Direct reduction swelling behavior of pellets in hydrogen-based shaft furnaces under typical atmospheres

Abstract: Hydrogen-based shaft furnace process is gaining more and more attention due to its low carbon emission, and the reduction behavior of iron bearing burdens significantly affects its operation. In this work, the effects of reduction degree, temperature, and atmosphere on the swelling behavior of pellet has been studied thoroughly under typical hydrogen metallurgy conditions. The results show that the pellets swelled rapidly in the early reduction stage, then reached a maximum reduction swelling index (RSI) at approximately 40% reduction degree. The crystalline transformation of the iron oxides during the reduction process was the main reason of pellets swelling. The RSI increased significantly with increasing temperature in the range of 850–1050°C, the maximum RSI increased from 6.66% to 25.0% in the gas composition of 100% H2. With the temperature increased, the pellets suffered more thermal stress resulting in an increase of the volume. The maximum RSI decreased from 19.78% to 17.35% with the volume proportion of H2 in the atmosphere increased from 55% to 100% at the temperature of 950°C. The metallic iron tended to precipitate in a lamellar structure rather than whiskers. Consequently, the inside of the pellets became regular, so the RSI decreased. Overall, controlling a reasonable temperature and increasing the H2 proportion is an effective way to decrease the RSI of pellets.

 

/

返回文章
返回