Cite this article as:

Shanjing Liu, Xiaohan Wan, Yue Sun, Shiqi Li, Xingmei Guo, Ming Li, Rui Yin, Qinghong Kong, Jing Kong, and Junhao Zhang, Cobalt-based multicomponent nanoparticles supported on N-doped graphene as advanced cathodic catalyst for zinc–air batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp.2212-2220. https://dx.doi.org/10.1007/s12613-022-2498-0
Shanjing Liu, Xiaohan Wan, Yue Sun, Shiqi Li, Xingmei Guo, Ming Li, Rui Yin, Qinghong Kong, Jing Kong, and Junhao Zhang, Cobalt-based multicomponent nanoparticles supported on N-doped graphene as advanced cathodic catalyst for zinc–air batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp.2212-2220. https://dx.doi.org/10.1007/s12613-022-2498-0
引用本文 PDF XML SpringerLink

氮掺杂石墨烯负载钴基多组分纳米粒子作为锌空气电池的先进阴极催化剂

摘要: 为了提高锌空气电池 (ZABs) 中阴极氧气还原反应 (ORR) 的效率,本文提出了一种吸附–络合–煅烧方法,在石墨烯纳米片上形成包含 Co、Co3O4 和 CoN 的多组分钴基纳米粒子及大量N掺杂原子,获得 Co/Co3O4/CoN/NG复合材料。尺寸小于50 nm的Co/Co3O4/CoN 纳米粒子均匀分散在 N 掺杂石墨烯 (NG) 基底上,极大地改善了ORR的电催化行为。测试结果表明,所制备材料催化ORR的半波电位高达0.80 V vs. RHE,极限电流密度为4.60 mA∙cm−2,与市售的铂/碳 (Pt/C) 催化剂接近。作为ZABs的阴极催化剂,该电池的比容量和开路电压分别为 843.0 mAh∙g1和1.41 V。优异的性能归因于高度分散的Co/Co3O4/CoN纳米颗粒和掺杂氮原子提供了大量的催化活性位点,以及石墨烯二维结构提供了高表面积及快速的电子传输通道。

 

Cobalt-based multicomponent nanoparticles supported on N-doped graphene as advanced cathodic catalyst for zinc–air batteries

Abstract: To improve the efficiency of cathodic oxygen reduction reaction (ORR) in zinc–air batteries (ZABs), an adsorption–complexation–calcination method was proposed to generate cobalt-based multicomponent nanoparticles comprising Co, Co3O4 and CoN, as well as numerous N heteroatoms, on graphene nanosheets (Co/Co3O4/CoN/NG). The Co/Co3O4/CoN nanoparticles with the size of less than 50 nm are homogeneously dispersed on N-doped graphene (NG) substrate, which greatly improve the catalytic behaviors for ORR. The results show that the half-wave potential is as high as 0.80 V vs. RHE and the limiting current density is 4.60 mA∙cm−2, which are close to those of commercially available platinum/carbon (Pt/C) catalysts. Applying as cathodic catalyst for ZABs, the battery shows large specific capacity and open circuit voltage of 843.0 mAh∙g−1 and 1.41 V, respectively. The excellent performance is attributed to the efficient two-dimensional structure with high accessible surface area and the numerous multiple active sites provided by highly scattered Co/Co3O4/CoN particles and doped nitrogen on the carbon matrix.

 

/

返回文章
返回