留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 6
Jun.  2022

图(12)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  3443
  • HTML全文浏览量:  884
  • PDF下载量:  447
  • 被引次数: 0
Jianliang Zhang, Hongyuan Fu, Yanxiang Liu, Han Dang, Lian Ye, Alberto N. Conejo,  and Runsheng Xu, Review on biomass metallurgy: Pretreatment technology, metallurgical mechanism and process design, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1133-1149. https://doi.org/10.1007/s12613-022-2501-9
Cite this article as:
Jianliang Zhang, Hongyuan Fu, Yanxiang Liu, Han Dang, Lian Ye, Alberto N. Conejo,  and Runsheng Xu, Review on biomass metallurgy: Pretreatment technology, metallurgical mechanism and process design, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1133-1149. https://doi.org/10.1007/s12613-022-2501-9
引用本文 PDF XML SpringerLink
特约综述

生物质冶金综述:预处理技术、冶金机理和流程设计

  • 通讯作者:

    刘彦祥    E-mail: 827216773@qq.com

    徐润生    E-mail: xurunsheng@ustb.edu.cn

文章亮点

  • (1)介绍了生物质冶金的概念、科学原理和主要特点。
  • (2)概述了冶金用生物质的预处理技术进展情况。
  • (3)阐述了处理后生物质用于炼铁过程的冶金行为。
  • (4)提出了生物质预处理技术与炼铁技术相耦合的生物质炼铁新工艺。
  • 随着现代工业的发展,化石燃料的过度使用和温室气体猛增引发的气候变化成为了人类面临的全球性问题,对生命系统造成了严重威胁。中国作为全球最大的能源消费国和CO2排放国,明确提出2030年前力争“碳达峰”和2060年前实现“碳中和”的目标。冶金行业作为能源密集型产业,每年消耗大量的化石燃料,排放大量的CO2,其中最主要的钢铁冶金过程的能量消耗和污染物排放占到全国的15%以上。加快钢铁工业能源结构调整,推动可再生清洁能源来代替传统化石能源,实现钢铁生产过程环境友好、能源可持续利用,是钢铁工业低碳绿色高质量发展的必由之路。生物质是一种碳中性、环境友好的可再生能源,生物质能也是我国亟待开发利用的巨大资源财富。将生物质应用于钢铁工业能减少化石燃料的消耗和CO2等温室气体的排放,也可以推动能源结构清洁低碳化,加快钢铁企业走绿色低碳发展之路。本文主要阐述了近年来在生物质冶金方面的研究情况,提出了生物质冶金的概念,分析了生物质冶金的科学原理,讨论了生物质预处理技术及生物质炼铁技术基础,提出了生物质冶金流程的新思路,分析了生物质冶金的经济社会效益,旨在为生物质冶金基础理论和工业应用的发展提供参考。
  • Invited Review

    Review on biomass metallurgy: Pretreatment technology, metallurgical mechanism and process design

    + Author Affiliations
    • The metallurgy industry consumes a considerable amount of coal and fossil fuels, and its carbon dioxide emissions are increasing every year. Replacing coal with renewable, carbon-neutral biomass for metallurgical production is of great significance in reducing global carbon consumption. This study describes the current state of research in biomass metallurgy in recent years and analyzes the concept and scientific principles of biomass metallurgy. The fundamentals of biomass pretreatment technology and biomass metallurgy technology were discussed, and the industrial application framework of biomass metallurgy was proposed. Furthermore, the economic and social advantages of biomass metallurgy were analyzed to serve as a reference for the advancement of fundamental theory and industrial application of biomass metallurgy.
    • loading
    • [1]
      Z.H. Wang, W.J. Huang, and Z.F. Chen, The peak of CO2 emissions in China: A new approach using survival models, Energy Econ., 81(2019), p. 1099. doi: 10.1016/j.eneco.2019.05.027
      [2]
      A. Kojo Alex, S.J. Wang, H.M. Fang, X.X. Wu, W.S. Chen, and P.L. Che, Review on alternative fuel application in iron ore sintering, Ironmaking Steelmaking, 48(2021), No. 10, p. 1211. doi: 10.1080/03019233.2021.1950969
      [3]
      X. Zhao, X.W Ma, and B.Y Chen, Challenges toward carbon neutrality in China: Strategies and countermeasures, Resour. Conserv. Recycl., 176(2022), art. No. 105959. doi: 10.1016/j.resconrec.2021.105959
      [4]
      Y. Wang, C.H Guo, X.J. Chen, L.Q. Jia, and X.N. Guo, Carbon peak and carbon neutrality in China: Goals, implementation path and prospects, China Geology, 4(2021), No. 4, p. 720.
      [5]
      A.P. Slowak and P. Taticchi, Technology, policy and management for carbon reduction: A critical and global review with insights on the role played by the Chinese Academy, J. Cleaner Prod., 103(2015), p. 601. doi: 10.1016/j.jclepro.2015.01.050
      [6]
      S.W. Yu, X. Hu, and L.X. Li, Does the development of renewable energy promote carbon reduction? Evidence from Chinese provinces, J. Environ. Manage., 268(2020), art. No. 110634. doi: 10.1016/j.jenvman.2020.110634
      [7]
      Z.Y. Fan and S.J. Friedmann, Low-carbon production of iron and steel: Technology options, economic assessment, and policy, Joule, 5(2021), No. 4, p. 829. doi: 10.1016/j.joule.2021.02.018
      [8]
      Y.R. Liu and Y.S. Shen, Modelling and optimisation of biomass injection in ironmaking blast furnaces, Prog. Energy Combust. Sci., 87(2021), art. No. 100952. doi: 10.1016/j.pecs.2021.100952
      [9]
      E. Mousa, C. Wang, J. Riesbeck, and M. Larsson, Biomass applications in iron and steel industry: An overview of challenges and opportunities, Renewable Sustainable Energy Rev., 65(2016), p. 1247. doi: 10.1016/j.rser.2016.07.061
      [10]
      M. Abdul Quader, S. Ahmed, S.Z. Dawal, and Y. Nukman, Present needs, recent progress and future trends of energy-efficient ultra-low carbon dioxide (CO2) steelmaking (ULCOS) program, Renewable Sustainable Energy Rev., 55(2016), p. 537. doi: 10.1016/j.rser.2015.10.101
      [11]
      M.A. Quader, S. Ahmed, R.A.R. Ghazilla, S. Ahmed, and M. Dahari, A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing, Renewable Sustainable Energy Rev., 50(2015), p. 594. doi: 10.1016/j.rser.2015.05.026
      [12]
      L.H. Chen, X.B. Li, and W.Y. Wen, The status, predicament and countermeasures of biomass secondary energy production in China, Renewable Sustainable Energy Rev., 16(2012), No. 8, p. 6212. doi: 10.1016/j.rser.2012.07.006
      [13]
      J.U. Nef, An early energy crisis and its consequences, Sci. Am., 237(1977), No. 5, p. 140. doi: 10.1038/scientificamerican1177-140
      [14]
      V. Smil, Energy in world history, Technol. Culture, 36(1994), No. 3, p. 690.
      [15]
      H. Suopajärvi, E. Pongrácz, and T. Fabritius, The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability, Renewable Sustainable Energy Rev., 25(2013), p. 511. doi: 10.1016/j.rser.2013.05.005
      [16]
      L. Ye, Z.W. Peng, L.C. Wang, A. Anzulevich, I. Bychkov, and D. Kalganov, Use of biochar for sustainable ferrous metallurgy, JOM, 71(2019), No. 11, p. 3931. doi: 10.1007/s11837-019-03766-4
      [17]
      M. Shahabuddin, M.T. Alam, B.B. Krishna, T. Bhaskar, and G. Perkins, A review on the production of renewable aviation fuels from the gasification of biomass and residual wastes, Bioresour. Technol., 312(2020), art. No. 123596. doi: 10.1016/j.biortech.2020.123596
      [18]
      D.P. Ho, H.H. Ngo, and W.S. Guo, A mini review on renewable sources for biofuel, Bioresour. Technol., 169(2014), p. 742. doi: 10.1016/j.biortech.2014.07.022
      [19]
      S.L. Wong, N. Ngadi, T.A.T. Abdullah, and I.M. Inuwa, Current state and future prospects of plastic waste as source of fuel: A review, Renewable Sustainable Energy Rev., 50(2015), p. 1167. doi: 10.1016/j.rser.2015.04.063
      [20]
      P.T. Zhao, Y.F. Shen, S.F. Ge, and K. Yoshikawa, Energy recycling from sewage sludge by producing solid biofuel with hydrothermal carbonization, Energy Convers. Manage., 78(2014), p. 815. doi: 10.1016/j.enconman.2013.11.026
      [21]
      J. Moon, T.Y. Mun, W. Yang, U. Lee, J. Hwang, and E. Jang, Effects of hydrothermal treatment of sewage sludge on pyrolysis and steam gasification, Energy Convers. Manage., 103(2015), p. 401. doi: 10.1016/j.enconman.2015.06.058
      [22]
      J.H. Bao, Z.S. Li, and N.S. Cai, Interaction between iron-based oxygen carrier and four coal ashes during chemical looping combustion, Appl. Energy, 115(2014), p. 549. doi: 10.1016/j.apenergy.2013.10.051
      [23]
      Z. Niu, G.B. Li, D.D. He, X.Z. Fu, W. Sun, and T. Yue, Resource-recycling and energy-saving innovation for iron removal in hydrometallurgy: Crystal transformation of ferric hydroxide precipitates by hydrothermal treatment, J. Hazard. Mater., 416(2021), art. No. 125972. doi: 10.1016/j.jhazmat.2021.125972
      [24]
      V. Dhyani and T. Bhaskar, A comprehensive review on the pyrolysis of lignocellulosic biomass, Renewable Energy, 129(2018), p. 695. doi: 10.1016/j.renene.2017.04.035
      [25]
      B. Xiao, X.F. Sun, and R.C. Sun, Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw, Polym. Degrad. Stab., 74(2001), No. 2, p. 307. doi: 10.1016/S0141-3910(01)00163-X
      [26]
      D. Li, Impact of Torrefaction on Grindability, Hydrophobicity and Fuel Characteristics of Biomass Relevant to Hawaiʻi [Dissertation], University of Hawai'i at Manoa, Manoa, 2015.
      [27]
      G.W. Wang, J.L. Zhang, J.Y. Lee, X.M. Mao, L. Ye, and W.R. Xu, Hydrothermal carbonization of maize straw for hydrochar production and its injection for blast furnace, Appl. Energy, 266(2020), art. No. 114818. doi: 10.1016/j.apenergy.2020.114818
      [28]
      Intergovernmental Panel on Climate Change, Anthropogenic and natural radiative forcing, [in] In Climate Change 2013 - The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 2013, p. 659.
      [29]
      K. Kumar Jha and T.T.M. Kannan, Recycling of plastic waste into fuel by pyrolysis - A review, Mater. Today Proc., 37(2021), p. 3718. doi: 10.1016/j.matpr.2020.10.181
      [30]
      P. Wang, J.L. Zhang, Q.J. Shao, and G.W. Wang, Physicochemical properties evolution of chars from palm kernel shell pyrolysis, J. Therm. Anal. Calorim., 133(2018), No. 3, p. 1271. doi: 10.1007/s10973-018-7185-z
      [31]
      A.R. Mohamed, Z. Hamzah, M.Z.M. Daud, and Z. Zakaria, The effects of holding time and the sweeping nitrogen gas flowrates on the pyrolysis of EFB using a fixed-bed reactor, Procedia Eng., 53(2013), p. 185. doi: 10.1016/j.proeng.2013.02.024
      [32]
      W.J. Liu, W.W. Li, H. Jiang, and H.Q. Yu, Fates of chemical elements in biomass during its pyrolysis, Chem. Rev., 117(2017), No. 9, p. 6367. doi: 10.1021/acs.chemrev.6b00647
      [33]
      W.T. Tsai, M.K. Lee, and Y.M. Chang, Fast pyrolysis of rice husk: Product yields and compositions, Bioresour. Technol., 98(2007), No. 1, p. 22. doi: 10.1016/j.biortech.2005.12.005
      [34]
      X.J. Ning, W. Liang, G.W. Wang, R.S. Xu, P. Wang, and J.L. Zhang, Effect of pyrolysis temperature on blast furnace injection performance of biochar, Fuel, 313(2022), art. No. 122648. doi: 10.1016/j.fuel.2021.122648
      [35]
      P. Wang, G.W. Wang, J.L. Zhang, J.Y. Lee, Y.J. Li, and C. Wang, Co-combustion characteristics and kinetic study of anthracite coal and palm kernel shell char, Appl. Therm. Eng., 143(2018), p. 736. doi: 10.1016/j.applthermaleng.2018.08.009
      [36]
      P. Wang, Basic Research on Application of Biomass Semi-Coke in Blast furnace Injection [Dissertation], University of Science and Technology Beijing, Beijing, 2019.
      [37]
      Q.J. Gao, V.L. Budarin, M. Cieplik, M. Gronnow, and S. Jansson, PCDDs, PCDFs and PCNs in products of microwave-assisted pyrolysis of woody biomass – Distribution among solid, liquid and gaseous phases and effects of material composition, Chemosphere, 145(2016), p. 193. doi: 10.1016/j.chemosphere.2015.11.110
      [38]
      G.W. Wang, J.L. Zhang, W.W. Chang, R.P. Li, Y.J. Li, and C. Wang, Structural features and gasification reactivity of biomass chars pyrolyzed in different atmospheres at high temperature, Energy, 147(2018), p. 25. doi: 10.1016/j.energy.2018.01.025
      [39]
      T.S. Farrow, C. Sun, and C.E. Snape, Impact of biomass char on coal char burn-out under air and oxy-fuel conditions, Fuel, 114(2013), p. 128. doi: 10.1016/j.fuel.2012.07.073
      [40]
      D. Basso, F. Patuzzi, D. Castello, M. Baratieri, E.C. Rada, and E. Weiss-Hortala, Agro-industrial waste to solid biofuel through hydrothermal carbonization, Waste Manage., 47(2016), p. 114. doi: 10.1016/j.wasman.2015.05.013
      [41]
      W. Wahyudiono, S. Machmudah, and M. Goto, Utilization of sub and supercritical water reactions in resource recovery of biomass wastes, Eng. J., 17(2013), No. 1, p. 1. doi: 10.4186/ej.2013.17.1.1
      [42]
      M.M. Titirici, A. Thomas, and M. Antonietti, Back in the black: Hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J. Chem., 31(2007), No. 6, p. 787. doi: 10.1039/b616045j
      [43]
      C. He, C.Y. Tang, C.H. Li, J.H. Yuan, K.Q. Tran, and Q.V. Bach, Wet torrefaction of biomass for high quality solid fuel production: A review, Renewable Sustainable Energy Rev., 91(2018), p. 259. doi: 10.1016/j.rser.2018.03.097
      [44]
      N.D. Berge, K.S. Ro, J.D. Mao, J.R.V. Flora, M.A. Chappell, and S. Bae, Hydrothermal carbonization of municipal waste streams, Environ. Sci. Technol., 45(2011), No. 13, p. 5696. doi: 10.1021/es2004528
      [45]
      P. Prawisudha, T. Namioka, and K. Yoshikawa, Coal alternative fuel production from municipal solid wastes employing hydrothermal treatment, Appl. Energy, 90(2012), No. 1, p. 298. doi: 10.1016/j.apenergy.2011.03.021
      [46]
      J. Lu, S.B. Ma, and J.S. Gao, Study on the pressurized hydrolysis dechlorination of PVC, Energy Fuels, 16(2002), No. 5, p. 1251. doi: 10.1021/ef020048t
      [47]
      L.C. Cao, I.K.M. Yu, Y.Y. Liu, X.X. Ruan, D.C.W. Tsang, and A.J. Hunt, Lignin valorization for the production of renewable chemicals: State-of-the-art review and future prospects, Bioresour. Technol., 269(2018), p. 465. doi: 10.1016/j.biortech.2018.08.065
      [48]
      J. Mazumder and H.I. De Lasa, Catalytic steam gasification of biomass surrogates: Thermodynamics and effect of operating conditions, Chem. Eng. J., 293(2016), p. 232. doi: 10.1016/j.cej.2016.02.034
      [49]
      V.S. Sikarwar, M. Zhao, P. Clough, J. Yao, X. Zhong, and M.Z. Memon, An overview of advances in biomass gasification, Energy Environ. Sci., 9(2016), No. 10, p. 2939. doi: 10.1039/C6EE00935B
      [50]
      B. Lemmens, H. Elslander, I. Vanderreydt, K. Peys, L. Diels, and M. Oosterlinck, Assessment of plasma gasification of high caloric waste streams, Waste Manage., 27(2007), No. 11, p. 1562. doi: 10.1016/j.wasman.2006.07.027
      [51]
      X. Han, Y.F. Zhang, D.D. Yao, K.Z. Qian, H.P. Yang, and X.H. Wang, Releasing behavior of alkali and alkaline earth metals during biomass gasification, J. Fuel Chem. Technol., 42(2014), No. 7, p. 792.
      [52]
      N. Wang, S. Yu, C.H. Huang, and Z.S. Zou, Simulation of flow and temperature fields in the iron bath vessel, J. Process Eng., 9(2009), Suppl. 1, p. 359.
      [53]
      V. Panjkovic, J. Truelove, and O. Ostrovski, Analysis of performance of an iron-bath reactor using computational fluid dynamics, Appl. Math. Modell., 26(2002), No. 2, p. 203. doi: 10.1016/S0307-904X(01)00056-7
      [54]
      V. Wilk and H. Hofbauer, Conversion of fuel nitrogen in a dual fluidized bed steam gasifier, Fuel, 106(2013), p. 793. doi: 10.1016/j.fuel.2012.12.056
      [55]
      J.C. Zhou, S.M. Masutani, D.M. Ishimura, S.Q. Turn, and C.M. Kinoshita, Release of fuel-bound nitrogen during biomass gasification, Ind. Eng. Chem. Res., 39(2000), No. 3, p. 626. doi: 10.1021/ie980318o
      [56]
      R.S. Xu, J.L. Zhang, G.W. Wang, H.B. Zuo, P.C. Zhang, and J.G. Shao, Gasification behaviors and kinetic study on biomass chars in CO2 condition, Chem. Eng. Res. Des., 107(2016), p. 34. doi: 10.1016/j.cherd.2015.10.014
      [57]
      R.S. Xu, W. Wang, and B.W. Dai, Influence of particle size on the combustion behaviors of bamboo char used for blast furnace injection, J. Iron Steel Res., 25(2018), No. 12, p. 1213. doi: 10.1007/s42243-018-0186-0
      [58]
      R.S. Xu, H. Zheng, W. Wang, X. Jiang, Q.G. Liu, and Z.L. Xue, Effect of carbonization temperature on microstructure characters of bamboo char used for blast furnace injection, J. Iron Steel Res., 30(2018), No. 7, p. 515.
      [59]
      R.S. Xu, S.L. Deng, W. Wang, J. Schenk, and F.F. Wang, Structural features and combustion behaviour of waste bamboo chopstick chars pyrolysed at different temperatures, Bioenergy Res., 13(2020), No. 2, p. 439. doi: 10.1007/s12155-020-10095-x
      [60]
      C. Wang, M. Larsson, J. Lövgren, L. Nilsson, P. Mellin, and W.H. Yang, Injection of solid biomass products into the blast furnace and its potential effects on an integrated steel plant, Energy Procedia, 61(2014), p. 2184. doi: 10.1016/j.egypro.2014.12.105
      [61]
      H. Suopajärvi, Bioreducer Use in Blast Furnace Ironmaking in Finland: Techno-economic Assessment and CO2 Emission Reduction Potential [Dissertation], University of Oulu, Oulu, 2015.
      [62]
      J.A. De Castro, G.D.M. Araújo, I. de Oliveira da Mota, Y. Sasaki, and J.I. Yagi, Analysis of the combined injection of pulverized coal and charcoal into large blast furnaces, J. Mater. Res. Technol., 2(2013), No. 4, p. 308. doi: 10.1016/j.jmrt.2013.06.003
      [63]
      J.G. Mathieson, H. Rogers, M.A. Somerville, and S. Jahanshahi, Reducing net CO2 emissions using charcoal as a blast furnace tuyere injectant, ISIJ Int., 52(2012), No. 8, p. 1489. doi: 10.2355/isijinternational.52.1489
      [64]
      J.G. Mathieson, H. Rogers, and M.A. Somerville, Use of biomass in the iron and steel industry – An Australian perspective, [in] 1st International Conference on Energy Efficiency and CO2 Reduction in the Steel Industry, Dusseldorf, 2011, p. 1.
      [65]
      H. Ghanbari, F. Pettersson, and H. Saxén, Sustainable development of primary steelmaking under novel blast furnace operation and injection of different reducing agents, Chem. Eng. Sci., 129(2015), p. 208. doi: 10.1016/j.ces.2015.01.069
      [66]
      J. Li, Preparation and Basic Properties of Biomass Coke for Iron Making [Dissertation], University of Science and Technology Beijing, Beijing, 2012.
      [67]
      G. Wang, J. Zhang, J. Shao, Z. Liu, G. Zhang, T. Xu, J. Guo, and H. Wang, Thermal behavior and kinetic analysis of co-combustion of waste biomass/low rank coal blends, Energy Convers. Manage., 124(2016), pp. 414-426. doi: 10.1016/j.enconman.2016.07.045
      [68]
      H. Nogami, J.I. Yagi, S.Y. Kitamura, and P.R. Austin, Analysis on material and energy balances of ironmaking systems on blast furnace operations with metallic charging, top gas recycling and natural gas injection, ISIJ Int., 46(2006), No. 12, p. 1759. doi: 10.2355/isijinternational.46.1759
      [69]
      H.T. Wang, M.S. Chu, T.L. Guo, W. Zhao, C. Feng, and Z.G. Liu, Mathematical simulation on blast furnace operation of coke oven gas injection in combination with top gas recycling, Steel Res. Int., 87(2016), No. 5, p. 539. doi: 10.1002/srin.201500372
      [70]
      C.L. Zhang, L. Vladislav, R.S. Xu, G. Sergey, K.X. Jiao, and J.L. Zhang, Blast furnace hydrogen-rich metallurgy-research on efficiency injection of natural gas and pulverized coal, Fuel, 311(2022), art. No. 122412. doi: 10.1016/j.fuel.2021.122412
      [71]
      E. Kasai, Y. Hosotani, T. Kawaguchi, K. Nushiro, and T. Aono, Effect of additives on the dioxins emissions in the iron ore sintering process, ISIJ Int., 41(2001), No. 1, p. 93. doi: 10.2355/isijinternational.41.93
      [72]
      T. Kawaguchi and M. Hara, Utilization of biomass for iron ore sintering, ISIJ Int., 53(2013), No. 9, p. 1599. doi: 10.2355/isijinternational.53.1599
      [73]
      E.P.D. Rocha, V.S. Guilherme, J.A. de Castro, Y. Sazaki, and J.I. Yagi, Analysis of synthetic natural gas injection into charcoal blast furnace, J. Mater. Res. Technol., 2(2013), No. 3, p. 255. doi: 10.1016/j.jmrt.2013.02.015
      [74]
      L.M. Lu, Iron Ore: Mineralogy, Processing and Environmental Sustainability, 1st ed., Woodhead Publishing, 2015.
      [75]
      L.M. Lu, M. Adam, M. Kilburn, S. Hapugoda, M. Somerville, and S. Jahanshahi, Substitution of charcoal for coke breeze in iron ore sintering, ISIJ Int., 53(2013), No. 9, p. 1607. doi: 10.2355/isijinternational.53.1607
      [76]
      J.G. Mathieson, T. Norgate, S. Jahanshahi, M.A. Somerville, N. Haque, and A. Deev, The potential for charcoal to reduce net greenhouse gas emissions from the Australian steel industry, [in] Proceeding of 6th International Congress on the Science and Technology of Ironmaking (ICSTI), Rio deJaneiro, Brazil, 2012.
      [77]
      M. Gan, X. Fan, Z. Ji, X. Chen, T. Jiang, and Z. Yu, Effect of distribution of biomass fuel in granules on iron ore sintering and NOx emission, Ironmaking Steelmaking, 41(2014), No. 6, p. 430. doi: 10.1179/1743281213Y.0000000138
      [78]
      X.H. Fan, Z.Y. Ji, and M. Gan, Application of biomass fuel to iron ore sintering, J. Cent. South Univ., 44(2013), No. 5, p. 1747.
      [79]
      M. Gan, X.H. Fan, X.L. Chen, Z.Y. Ji, W. Lv, and Y. Wang, Reduction of pollutant emission in iron ore sintering process by applying biomass fuels, ISIJ Int., 52(2012), No. 9, p. 1574. doi: 10.2355/isijinternational.52.1574
      [80]
      X.H. Fan, M. Gan, T. Jiang, X.L. Chen, and L.S. Yuan, Decreasing bentonite dosage during iron ore pelletising, Ironmaking Steelmaking, 38(2011), No. 8, p. 597. doi: 10.1179/1743281211Y.0000000029
      [81]
      M. Gan, X.H. Fan, Z.H. Zhang, X.J. Zhou, Y.Q. Wang, and H.J. Yu, Fundamental research on applying organic binder SHN to oxidized pellets, J. Iron Steel Res. Int., 16(2009), p. 327.
      [82]
      M. Gan, Z.Y. Ji, X.H. Fan, W. Lv, R.Y. Zheng, and X.L. Chen, Preparing high-strength titanium pellets for ironmaking as furnace protector: Optimum route for ilmenite oxidation and consolidation, Powder Technol., 333(2018), p. 385. doi: 10.1016/j.powtec.2018.04.042
      [83]
      Y.Q. Zhao, T.C. Sun, H.Y. Zhao, C. Chen, and X.P. Wang, Effect of reductant type on the embedding direct reduction of beach titanomagnetite concentrate, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 152. doi: 10.1007/s12613-019-1719-7
      [84]
      X.H. Fan, M. Gan, T. Jiang, L.S. Yuan, and X.L. Chen, Influence of flux additives on iron ore oxidized pellets, J. Cent. South Univ. Technol., 17(2010), No. 4, p. 732. doi: 10.1007/s11771-010-0548-7
      [85]
      J. Zhao, H.B. Zuo, J.S. Wang, and Q.G. Xue, The mechanism and products for co-thermal extraction of biomass and low-rank coal with NMP, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1512. doi: 10.1007/s12613-019-1872-z
      [86]
      M.G. Montiano, E. Díaz-Faes, C. Barriocanal, and R. Alvarez, Influence of biomass on metallurgical coke quality, Fuel, 116(2014), p. 175. doi: 10.1016/j.fuel.2013.07.070
      [87]
      M.W. Seo, H.M. Jeong, W.J. Lee, S.J. Yoon, H.W. Ra, and Y.K. Kim, Carbonization characteristics of biomass/coking coal blends for the application of bio-coke, Chem. Eng. J., 394(2020), art. No. 124943. doi: 10.1016/j.cej.2020.124943
      [88]
      M.A. Diez, R. Alvarez, and M. Fernández, Biomass derived products as modifiers of the rheological properties of coking coals, Fuel, 96(2012), p. 306. doi: 10.1016/j.fuel.2011.12.065
      [89]
      T. Matsumura, M. Ichida, T. Nagasaka, and K. Kato, Carbonization behaviour of woody biomass and resulting metallurgical coke properties, ISIJ Int., 48(2008), No. 5, p. 572. doi: 10.2355/isijinternational.48.572
      [90]
      Z.W. Hu, J.L. Zhang, H.B. Zuo, M. Tian, Z.J. Liu, and T.J. Yang, Substitution of biomass for coal and coke in ironmaking process, Adv. Mater. Res., 236-238(2011), p. 77. doi: 10.4028/www.scientific.net/AMR.236-238.77
      [91]
      H. Wang, Experimental Study on Coking of Biomass Blended Coal [Dissertation], Wuhan University of Science and Technology, Wuhan, 2015.
      [92]
      H.B. Zuo, Z.W. Hu, J.L. Zhang, J. Li, and Z.J. Liu, Direct reduction of iron ore by biomass char, Int. J. Miner. Metall. Mater., 20(2013), No. 6, p. 514. doi: 10.1007/s12613-013-0759-7
      [93]
      J.L. Zhang, J. Guo, G.W. Wang, T. Xu, Y.F. Chai, and C.L. Zheng, Kinetics of petroleum coke/biomass blends during co-gasification, Int. J. Miner. Metall. Mater., 23(2016), No. 9, p. 1001. doi: 10.1007/s12613-016-1317-x
      [94]
      Z.W. Hu, Basic Research on CO2 Emission Reduction of Iron Smelting Assisted by Biomass Energy [Dissertation], University of Science and Technology Beijing, Beijing, 2013.
      [95]
      D.B. Guo, M. Hu, C.X. Pu, B. Xiao, Z.Q. Hu, and S.M. Liu, Kinetics and mechanisms of direct reduction of iron ore-biomass composite pellets with hydrogen gas, Int. J. Hydrogen Energy, 40(2015), No. 14, p. 4733. doi: 10.1016/j.ijhydene.2015.02.065
      [96]
      D.B. Guo, L.D. Zhu, S. Guo, B.H. Cui, S.P. Luo, and M. Laghari, Direct reduction of oxidized iron ore pellets using biomass syngas as the reducer, Fuel Process. Technol., 148(2016), p. 276. doi: 10.1016/j.fuproc.2016.03.009
      [97]
      D.B. Guo, Y.B. Li, B.H. Cui, Z.H. Chen, S.P. Luo, and B. Xiao, Direct reduction of iron ore/biomass composite pellets using simulated biomass-derived syngas: Experimental analysis and kinetic modelling, Chem. Eng. J., 327(2017), p. 822. doi: 10.1016/j.cej.2017.06.118
      [98]
      M. Zandi, M. Martinez-Pacheco, and T.A.T. Fray, Biomass for iron ore sintering, Miner. Eng., 23(2010), No. 14, p. 1139. doi: 10.1016/j.mineng.2010.07.010
      [99]
      P. Yuan, B.X. Shen, D.P. Duan, G. Adwek, X. Mei, and F.J. Lu, Study on the formation of direct reduced iron by using biomass as reductants of carbon containing pellets in RHF process, Energy, 141(2017), p. 472. doi: 10.1016/j.energy.2017.09.058
      [100]
      Q. Hu, D.D. Yao, Y.P. Xie, Y.J. Zhu, H.P. Yang, and Y.Q. Chen, Study on intrinsic reaction behavior and kinetics during reduction of iron ore pellets by utilization of biochar, Energy Convers. Manage., 158(2018), p. 1. doi: 10.1016/j.enconman.2017.12.037
      [101]
      H.B. Zuo, W.W. Geng, J.L. Zhang, and G.W. Wang, Comparison of kinetic models for isothermal CO2 gasification of coal char-biomass char blended char, Int. J. Miner. Metall. Mater., 22(2015), No. 4, p. 363. doi: 10.1007/s12613-015-1081-3
      [102]
      D. Cholico-González, N.O. Lara, M.A.S. Miranda, R.M. Estrella, R.E. García, and C.A.L. Patiño, Efficient metallization of magnetite concentrate by reduction with agave bagasse as a source of reducing agents, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 603. doi: 10.1007/s12613-020-2079-z
      [103]
      Y. Ueki, Y. Nunome, R. Yoshiie, I. Naruse, Y. Nishibata, and S. Aizawa, Effect of woody biomass addition on coke properties, ISIJ Int., 54(2014), No. 11, p. 2454. doi: 10.2355/isijinternational.54.2454
      [104]
      H. Konishi, K. Ichikawa, and T. Usui, Effect of residual volatile matter on reduction of iron oxide in semi-charcoal composite pellets, ISIJ Int., 50(2010), No. 3, p. 386. doi: 10.2355/isijinternational.50.386
      [105]
      Z.W. Hu, J.L. Zhang, H.B. Zuo, Z.J. Liu, and T.J. Yang, Applications and prospects of bio-energy in ironmaking process, [in] 2010 the Second China Energy Scientist Forum, Xuzhou, 2010, p. 708.
      [106]
      Y. Dong, X.X. Qiao, G.H. Liu, J.N. Jia, Z.R. Geng, and S.L. Zhao, Research situation of reduction gas used in gas-based direct reduction iron technology, Energy Energy Conserv., 2016, No. 3, p. 2.
      [107]
      H. Suopajärvi and T. Fabritius, Effects of biomass use in integrated steel plant - gate-to-gate life cycle inventory method, ISIJ Int., 52(2012), No. 5, p. 779. doi: 10.2355/isijinternational.52.779
      [108]
      W. Xiong, G.Q. Wang, and S.X. Zhou, Comparison of energy consumption and environmental impact of replacement of coal with straw injection into blast furnace, Environ. Sci. Technol., 36(2013), No. 4, p. 137.

    Catalog


    • /

      返回文章
      返回