留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 1
Jan.  2023

图(14)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1025
  • HTML全文浏览量:  388
  • PDF下载量:  72
  • 被引次数: 0
Zhiwei Wang, Min Zhang, Cong Li, Fenglei Niu, Hao Zhang, Peng Xue, Dingrui Ni, Bolv Xiao, and Zongyi Ma, Achieving a high-strength dissimilar joint of T91 heat-resistant steel to 316L stainless steel via friction stir welding, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 166-176. https://doi.org/10.1007/s12613-022-2508-2
Cite this article as:
Zhiwei Wang, Min Zhang, Cong Li, Fenglei Niu, Hao Zhang, Peng Xue, Dingrui Ni, Bolv Xiao, and Zongyi Ma, Achieving a high-strength dissimilar joint of T91 heat-resistant steel to 316L stainless steel via friction stir welding, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 166-176. https://doi.org/10.1007/s12613-022-2508-2
引用本文 PDF XML SpringerLink
研究论文

搅拌摩擦焊实现T91耐热钢和316L不锈钢的高强异质连接

  • 通讯作者:

    薛鹏    E-mail: pxue@imr.ac.cn

    倪丁瑞    E-mail: drni@imr.ac.cn

文章亮点

  • (1) 成功实现T91耐热钢和316L不锈钢的等强搅拌摩擦焊接.
  • (2) 在异质界面处发现细晶过渡区并阐明其形成机制.
  • (3) 异质界面处同时存在机械搅拌与冶金结合作用是实现可靠连接的关键.
  • (4) 生成铁素体是接头T91侧热影响区发生软化(硬度降低10 HV)的主要原因.
  • T91耐热钢和316L不锈钢是超超临界发电机组和核反应堆中的关键结构材料,实现上述两种材料的可靠连接是保证核电站构件安全服役的前提。然而采用传统熔焊方法难以获得高质量接头,接头的强度和塑性亟待进一步优化。本研究通过搅拌摩擦焊接技术对T91与316L钢异质接头的组织与性能进行协同优化,采用小尺寸工具在较高焊速下施焊获得了拥有大尺寸异质结合界面的无缺陷接头,异质界面处的混合区中同时存在机械混合和冶金结合作用,并成为实现两种材料可靠连接的关键。整体接头未发现明显的材料软化现象,由于铁素体相的生成T91侧热影响区的硬度有所下降,但降幅仅为HV ~10。接头表现出优异的拉伸性能,其中抗拉强度可达316L母材水平,屈服强度相对316L母材提升26%,同时保持较高的断裂延伸率(17%)。本研究结果可为高强异质核电材料的可靠连接提供技术指导和理论参考。
  • Research Article

    Achieving a high-strength dissimilar joint of T91 heat-resistant steel to 316L stainless steel via friction stir welding

    + Author Affiliations
    • The reliable welding of T91 heat-resistant steel to 316L stainless steel is a considerable issue for ensuring the safety in service of ultra-supercritical power generation unit and nuclear fusion reactor, but the high-quality dissimilar joint of these two steels was difficult to be obtained by traditional fusion welding methods. Here we improved the structure–property synergy in a dissimilar joint of T91 steel to 316L steel via friction stir welding. A defect-free joint with a large bonding interface was produced using a small-sized tool under a relatively high welding speed. The bonding interface was involved in a mixing zone with both mechanical mixing and metallurgical bonding. No obvious material softening was detected in the joint except a negligible hardness decline of only HV ~10 in the heat-affected zone of the T91 steel side due to the formation of ferrite phase. The welded joint exhibited an excellent ultimate tensile strength as high as that of the 316L parent metal and a greatly enhanced yield strength on account of the dependable bonding and material renovation in the weld zone. This work recommends a promising technique for producing high-strength weldments of dissimilar nuclear steels.
    • loading
    • [1]
      R. Viswanathan, J.F. Henry, J. Tanzosh, et al, U.S. program on materials technology for ultra-supercritical coal power plants, J. Mater. Eng. Perform., 14(2005), No. 3, p. 281. doi: 10.1361/10599490524039
      [2]
      S.J. Zinkle and G.S. Was, Materials challenges in nuclear energy, Acta Mater., 61(2013), No. 3, p. 735. doi: 10.1016/j.actamat.2012.11.004
      [3]
      S.J. Zinkle and J.T. Busby, Structural materials for fission & fusion energy, Mater. Today, 12(2009), No. 11, p. 12. doi: 10.1016/S1369-7021(09)70294-9
      [4]
      Y. Gong, Z.G. Yang, and F.Y. Yang, Heat strength evaluation and microstructures observation of the welded joints of one China-made T91 steel, J. Mater. Eng. Perform., 21(2012), No. 7, p. 1313. doi: 10.1007/s11665-011-0048-4
      [5]
      M. Ida, T. Chida, K. Furuya, E. Wakai, H. Nakamura, and M. Sugimoto, Thermal-stress analysis of IFMIF target back-wall made of reduced-activation ferritic steel and austenitic stainless steel, J. Nucl. Mater., 386-388(2009), p. 987. doi: 10.1016/j.jnucmat.2008.12.272
      [6]
      J.H. Zhou, Y.F. Shen, and N. Jia, Strengthening mechanisms of reduced activation ferritic/martensitic steels: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 335. doi: 10.1007/s12613-020-2121-1
      [7]
      C. Li, X.D. Fang, Q.S. Wang, et al, A synergy of different corrosion failure modes pertaining to T91 steel impacted by extreme lead–bismuth eutectic flow pattern, Corros. Sci., 180(2021), art. No. 109214. doi: 10.1016/j.corsci.2020.109214
      [8]
      C. Li, Y.J. Liu, F.F. Zhang, X.D. Fang, and Z. Liu, Erosion-corrosion of 304N austenitic steels in liquid PbBi flow perpendicular to steel surface, Mater. Charact., 175(2021), art. No. 111054. doi: 10.1016/j.matchar.2021.111054
      [9]
      J.Y. Zhang, B. Huang, Q.S. Wu, C.J. Li, and Q.Y. Huang, Effect of post-weld heat treatment on the mechanical properties of CLAM/316L dissimilar joint, Fusion Eng. Des., 100(2015), p. 334. doi: 10.1016/j.fusengdes.2015.06.194
      [10]
      R.S. Vidyarthy, A. Kulkarni, and D.K. Dwivedi, Study of microstructure and mechanical property relationships of A-TIG welded P91–316L dissimilar steel joint, Mater. Sci. Eng. A, 695(2017), p. 249. doi: 10.1016/j.msea.2017.04.038
      [11]
      S.K. Albert, C.R. Das, S. Sam, et al, Mechanical properties of similar and dissimilar weldments of RAFMS and AISI 316L (N) SS prepared by electron beam welding process, Fusion Eng. Des., 89(2014), No. 7-8, p. 1605. doi: 10.1016/j.fusengdes.2014.04.063
      [12]
      I. Serre and J.B. Vogt, Mechanical properties of a 316L/T91 weld joint tested in lead-bismuth liquid, Mater. Des., 30(2009), No. 9, p. 3776. doi: 10.1016/j.matdes.2009.01.038
      [13]
      J. van den Bosch and A. Almazouzi, Compatibility of martensitic/austenitic steel welds with liquid lead bismuth eutectic environment, J. Nucl. Mater., 385(2009), No. 3, p. 504. doi: 10.1016/j.jnucmat.2008.12.043
      [14]
      H.Y. Fu, T. Nagasaka, M. Yamazaki, et al, Deformation of dissimilar-metals joint between F82H and 316L in impact tests after neutron irradiation, Fusion Eng. Des., 124(2017), p. 1063. doi: 10.1016/j.fusengdes.2017.03.157
      [15]
      H. Serizawa, D. Mori, Y. Shirai, H. Ogiwara, and H. Mori, Weldability of dissimilar joint between F82H and SUS316L under fiber laser welding, Fusion Eng. Des., 88(2013), No. 9-10, p. 2466. doi: 10.1016/j.fusengdes.2013.03.041
      [16]
      H. Serizawa, D. Mori, H. Ogiwara, and H. Mori, Effect of laser beam position on mechanical properties of F82H/SUS316L butt-joint welded by fiber laser, Fusion Eng. Des., 89(2014), No. 7-8, p. 1764. doi: 10.1016/j.fusengdes.2013.12.003
      [17]
      Y. Li, Y.P. Zeng, and Z.C. Wang, Interfacial microstructure evolution of 12Cr1MoV/TP347H dissimilar steel welded joints during aging, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1497. doi: 10.1007/s12613-021-2295-1
      [18]
      D. Sunilkumar, S. Muthukumaran, M. Vasudevan, and M.G. Reddy, Effect of friction stir and activated-GTA welding processes on the 9Cr–1Mo steel to 316LN stainless steel dissimilar weld joints, Sci. Technol. Weld. Join., 25(2020), No. 4, p. 311. doi: 10.1080/13621718.2019.1695347
      [19]
      R.S. Mishra and Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R, 50(2005), No. 1-2, p. 1. doi: 10.1016/j.mser.2005.07.001
      [20]
      Z.Y. Ma, A.H. Feng, D.L. Chen, and J. Shen, Recent advances in friction stir welding/processing of aluminum alloys: Microstructural evolution and mechanical properties, Crit. Rev. Solid State Mater. Sci., 43(2018), No. 4, p. 269. doi: 10.1080/10408436.2017.1358145
      [21]
      Q. Shang, D.R. Ni, P. Xue, B.L. Xiao, and Z.Y. Ma, Improving joint performance of friction stir welded wrought Mg alloy by controlling non-uniform deformation behavior, Mater. Sci. Eng. A, 707(2017), p. 426. doi: 10.1016/j.msea.2017.09.084
      [22]
      S.C. Han, L.H. Wu, C.Y. Jiang, et al, Achieving a strong polypropylene/aluminum alloy friction spot joint via a surface laser processing pretreatment, J. Mater. Sci. Technol., 50(2020), p. 103. doi: 10.1016/j.jmst.2020.02.035
      [23]
      F.C. Liu, Y. Hovanski, M.P. Miles, C.D. Sorensen, and T.W. Nelson, A review of friction stir welding of steels: Tool, material flow, microstructure, and properties, J. Mater. Sci. Technol., 34(2018), No. 1, p. 39. doi: 10.1016/j.jmst.2017.10.024
      [24]
      D.G. Mohan and C.S. Wu, A review on friction stir welding of steels, Chin. J. Mech. Eng., 34(2021), art. No. 137. doi: 10.1186/s10033-021-00655-3
      [25]
      B. He, L. Cui, D.P. Wang, Y.C. Liu, C.X. Liu, and H.J. Li, The metallurgical bonding and high temperature tensile behaviors of 9Cr–1W steel and 316L steel dissimilar joint by friction stir welding, J. Manuf. Process., 44(2019), p. 241. doi: 10.1016/j.jmapro.2019.05.033
      [26]
      B. He, L. Cui, D.P. Wang, H.J. Li, and C.X. Liu, Microstructure and mechanical properties of RAFM–316L dissimilar joints by friction stir welding with different butt joining modes, Acta Metall. Sin. Engl. Lett., 33(2020), No. 1, p. 135. doi: 10.1007/s40195-019-00951-x
      [27]
      W.S. Tang, X.Q. Yang, S.L. Li, and H.J. Li, Microstructure and properties of CLAM/316L steel friction stir welded joints, J. Mater. Process. Technol., 271(2019), p. 189. doi: 10.1016/j.jmatprotec.2019.03.032
      [28]
      C. Zhang, L. Cui, D.P. Wang, Y.C. Liu, C.X. Liu, and H.J. Li, The heterogeneous microstructure of heat affect zone and its effect on creep resistance for friction stir joints on 9Cr–1.5W heat resistant steel, Scripta. Mater., 158(2019), p. 6. doi: 10.1016/j.scriptamat.2018.08.028
      [29]
      M. Türkan and Ö. Karakaş, Numerical modeling of defect formation in friction stir welding, Mater. Today Commun., 31(2022), art. No. 103539. doi: 10.1016/j.mtcomm.2022.103539
      [30]
      F.J. Martín-Muñoz, L. Soler-Crespo, and D. Gómez-Briceño, Assessment of the influence of surface finishing and weld joints on the corrosion/oxidation behaviour of stainless steels in lead bismuth eutectic, J. Nucl. Mater., 416(2011), No. 1-2, p. 80. doi: 10.1016/j.jnucmat.2010.12.230
      [31]
      Z.W. Wang, M. Liu, H. Zhang, et al, Welding behavior of an ultrahigh-strength quenching and partitioning steel by fusion and solid-state welding methods, J. Mater. Res. Technol., 17(2022), p. 1289. doi: 10.1016/j.jmrt.2022.01.086
      [32]
      Z.W. Wang, G.N. Ma, B.H. Yu, et al, Improving mechanical properties of friction-stir-spot-welded advanced ultra-high-strength steel with additional water cooling, Sci. Technol. Weld. Joining, 25(2020), No. 4, p. 336. doi: 10.1080/13621718.2019.1706259
      [33]
      S. Sackl, H. Clemens, and S. Primig, Investigation of the self tempering effect of martensite by means of atom probe tomography, Pract. Metallogr., 52(2015), No. 7, p. 374. doi: 10.3139/147.110343
      [34]
      Z.W. Wang, G.M. Xie, D. Wang, et al, Microstructural evolution and mechanical behavior of friction-stir-welded DP1180 advanced ultrahigh strength steel, Acta Metall. Sin. Engl. Lett., 33(2020), No. 1, p. 58. doi: 10.1007/s40195-019-00949-5
      [35]
      M. Shamanian, A. Mirzaei, J. Kangazian, and J.A. Szpunar, Characterization and mechanical behavior of AISI 316L/Incoloy 825 dissimilar welds processed by friction stir welding, J. Manuf. Process., 55(2020), p. 66. doi: 10.1016/j.jmapro.2020.03.045
      [36]
      Y.C. Chen, H. Fujii, T. Tsumura, et al, Friction stir processing of 316L stainless steel plate, Sci. Technol. Weld. Joining, 14(2009), No. 3, p. 197. doi: 10.1179/136217108X386527
      [37]
      S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, and M. Inagaki, Rapid formation of the sigma phase in 304 stainless steel during friction stir welding, Scripta. Mater., 49(2003), No. 12, p. 1175. doi: 10.1016/j.scriptamat.2003.08.022
      [38]
      S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, and M. Inagaki, Corrosion resistance of friction stir welded 304 stainless steel, Scripta Mater., 51(2004), No. 2, p. 101. doi: 10.1016/j.scriptamat.2004.04.001
      [39]
      Z.W. Wang, J.F. Zhang, G.M. Xie, et al, Evolution mechanisms of microstructure and mechanical properties in a friction stir welded ultrahigh-strength quenching and partitioning steel, J. Mater. Sci. Technol., 102(2022), p. 213. doi: 10.1016/j.jmst.2021.06.031
      [40]
      P.C. Zhu, L. Zhang, Z.C. Li, et al, Microstructure and mechanical properties of friction stir welded 1.5 GPa martensitic high-strength steel plates, Acta Metall. Sin. Engl. Lett., 35(2022), No. 7, p. 1079. doi: 10.1007/s40195-021-01358-3

    Catalog


    • /

      返回文章
      返回