留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 10
Oct.  2022

图(8)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  5877
  • HTML全文浏览量:  2608
  • PDF下载量:  81
  • 被引次数: 0
Heng Zheng, Oday Daghagheleh, Thomas Wolfinger, Bernd Taferner, Johannes Schenk,  and Runsheng Xu, Fluidization behavior and reduction kinetics of pre-oxidized magnetite-based iron ore in a hydrogen-induced fluidized bed, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp. 1873-1881. https://doi.org/10.1007/s12613-022-2511-7
Cite this article as:
Heng Zheng, Oday Daghagheleh, Thomas Wolfinger, Bernd Taferner, Johannes Schenk,  and Runsheng Xu, Fluidization behavior and reduction kinetics of pre-oxidized magnetite-based iron ore in a hydrogen-induced fluidized bed, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp. 1873-1881. https://doi.org/10.1007/s12613-022-2511-7
引用本文 PDF XML SpringerLink
研究论文Open Access

预氧化磁铁矿颗粒在氢基流化床中的流化行为及还原动力学研究

  • 通讯作者:

    郑恒    E-mail: heng.zheng@stud.unileoben.ac.at

文章亮点

  • (1) 量化了铁矿石在流化床内的流化状态。
  • (2) 系统地探究了预氧化处理对铁矿石流态化和还原行为影响。
  • (3) 总结了动力学因素与还原后铁矿石形貌的关系。
  • 欧盟(EU)的目标是在2050年实现碳中和,目前,炼钢行业仍然是欧洲主要的二氧化碳排放行业之一,其排放量占欧盟二氧化碳排放总量的4%。因此,为了避免二氧化碳的产生,使用氢气还原铁矿石生产直接还原铁(DRI)受到了越来越多的关注。我们之前的研究显示,在还原过程中由于磁铁矿颗粒表面会形成致密的铁壳,使其表现出较差的流化性和还原性。磁铁矿预氧化处理后,会显著改善它的流化性。本文探究了不同预氧化温度和预氧化程度对磁铁矿颗粒在氢基流化床内流化和还原行为的影响。通过光学显微镜和电子扫描显微镜(SEM)表征了还原后颗粒的显微结构和形貌,并探究了还原过程中的动力学反应机理。结果表明,较高预氧化温度(1000°C)处理后的磁铁矿颗粒表面较为平坦,表现出较好的流化行为。较低预氧化温度(800°C)处理后的磁铁矿颗粒表面形成显著的赤铁矿晶须,其流化性有所降低;但其表现出更好的还原性,特别是在还原后期。磁铁矿的预氧化程度对流化和还原行为没有明显影响。动力学分析表明,较高预氧化温度处理后的磁铁矿颗粒,在还原后期,其还原速率受铁离子扩散速率影响。较低的预氧化温度能改善铁离子的扩散,进而提高还原后期的反应速率。

  • Research ArticleOpen Access

    Fluidization behavior and reduction kinetics of pre-oxidized magnetite-based iron ore in a hydrogen-induced fluidized bed

    + Author Affiliations
    • The influence of different pre-oxidation temperatures and pre-oxidation degrees on the reduction and fluidization behaviors of magnetite-based iron ore was investigated in a hydrogen-induced fluidized bed. The raw magnetite-based iron ore was pre-oxidized at 800 and 1000°C for a certain time to reach a partly oxidation and deeply oxidation state. The structure and morphology of the reduced particles were analyzed via optical microscope and scanning electron microscopy (SEM). The reaction kinetic mechanism was determined based on the double-logarithm analysis. The results indicate that the materials with higher oxidation temperature and wider particle size range show better fluidization behaviors. The lower oxidation temperature is more beneficial for the reduction rate, especially in the later reduction stage. The pre-oxidation degree shows no obvious influence on the fluidization and reduction behaviors. Based on the kinetic analysis, the reduction progress can be divided into three stages. The reduction mechanism was discussed combing the surface morphology and phase structure.

    • loading
    • [1]
      European Commission, Climate Action - 2050 Long-term Strategy [2021-11-13]. https://ec.europa.eu/clima/policies/strategies/2050_en
      [2]
      Worldsteel, Steel Statistical Yearbooks [2021-11-14]. https://www.worldsteel.org/steel-by-topic/statistics/steel-statistical-yearbook.html
      [3]
      Roland Berger, The Future of Steelmaking–How the European Steel Industry can Achieve Carbon Neutrality, Roland Berger GMBH, Munich, 2020.
      [4]
      European Commission, Ultra-Low CO2 Steelmaking [2021-11-14]. https://cordis.europa.eu/project/id/515960
      [5]
      M.A. Quader, S. Ahmed, S.Z. Dawal, and Y. Nukman, Present needs, recent progress and future trends of energy-efficient Ultra-Low Carbon Dioxide (CO2) Steelmaking (ULCOS) program, Renewable Sustainable Energy Rev., 55(2016), p. 537. doi: 10.1016/j.rser.2015.10.101
      [6]
      A. Bhaskar, M. Assadi, and H.N. Somehsaraei, Decarbonization of the iron and steel industry with direct reduction of iron ore with green hydrogen, Energies, 13(2020), No. 3, art. No. 758. doi: 10.3390/en13030758
      [7]
      Y.B. Chen and H.B. Zuo, Review of hydrogen-rich ironmaking technology in blast furnace, Ironmaking Steelmaking, 48(2021), No. 6, p. 749. doi: 10.1080/03019233.2021.1909992
      [8]
      W.G. Liu, H.B. Zuo, J.S. Wang, Q.G. Xue, B.L. Ren, and F. Yang, The production and application of hydrogen in steel industry, Int. J. Hydrogen Energy, 46(2021), No. 17, p. 10548. doi: 10.1016/j.ijhydene.2020.12.123
      [9]
      F. Patisson and O. Mirgaux, Hydrogen ironmaking: How it works, Metals, 10(2020), No. 7, art. No. 922. doi: 10.3390/met10070922
      [10]
      Primetals, Enhanced Energy Efficient Steel Production – E³-SteP, Primetals Technologies, 2019 [2021-11-14]. https://nachhaltigwirtschaften.at/resources/nw_pdf/events/20191009_highlights/spreitzer-rein-eisl_e3-step.pdf
      [11]
      J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, and Y.S. Zhou, Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 713. doi: 10.1007/s12613-020-2021-4
      [12]
      Bellona Europa, Hydrogen in Steel Production: What is Happening in Europe – Part Two, Bellona, 2021 [2021-11-14]. https://bellona.org/news/industrial-pollution/2021-05-hydrogen-in-steel-production-what-is-happening-in-europe-part-two
      [13]
      Hybrit, Fossil-free Steel – A Joint Opportunity! [2021-11-14]. https://www.hybritdevelopment.se/en/
      [14]
      SALCOS®, Our Program SALCOS [2021-11-14]. https://salcos.salzgitter-ag.com/en/
      [15]
      Voestalpine, H2FUTURE [2021-11-14]. https://www.voestalpine.com/greentecsteel/en/breakthrough-technologies/
      [16]
      J.L. Schenk, Recent status of fluidized bed technologies for producing iron input materials for steelmaking, Particuology, 9(2011), No. 1, p. 14. doi: 10.1016/j.partic.2010.08.011
      [17]
      S. Daniel, Development of Characterization Methods for the Evalution of Kinetic Behavior and the Fluidization of Iron Ore Fines during Hydrogen-induced Fluidized Bed Reduction [Dissertation], Montanuniversitaet Leoben, Leoben, 2000.
      [18]
      D. Spreitzer and J. Schenk, Iron ore reduction by hydrogen using a laboratory scale fluidized bed reactor: Kinetic investigation—Experimental setup and method for determination, Metall. Mater. Trans. B, 50(2019), No. 5, p. 2471. doi: 10.1007/s11663-019-01650-9
      [19]
      D. Spreitzer and J. Schenk, Fluidization behavior and reducibility of iron ore fines during hydrogen-induced fluidized bed reduction, Particuology, 52(2020), p. 36. doi: 10.1016/j.partic.2019.11.006
      [20]
      H. Zheng, D. Spreitzer, T. Wolfinger, J. Schenk, and R.S. Xu, Effect of prior oxidation on the reduction behavior of magnetite-based iron ore during hydrogen-induced fluidized bed reduction, Metall. Mater. Trans. B, 52(2021), No. 4, p. 1955. doi: 10.1007/s11663-021-02215-5
      [21]
      T. Wolfinger, D. Spreitzer, H. Zheng, and J. Schenk, Influence of a prior oxidation on the reduction behavior of magnetite iron ore ultra-fines using hydrogen, Metall. Mater. Trans. B, 53(2022), No. 1, p. 14. doi: 10.1007/s11663-021-02378-1
      [22]
      E. Park and O. Ostrovski, Reduction of titania-ferrous ore by hydrogen, ISIJ Int., 44(2004), No. 6, p. 999. doi: 10.2355/isijinternational.44.999
      [23]
      Z.Y. Wang, J.L. Zhang, K.X. Jiao, Z.J. Liu, and M. Barati, Effect of pre-oxidation on the kinetics of reduction of ironsand, J. Alloys Compd., 729(2017), p. 874. doi: 10.1016/j.jallcom.2017.08.293
      [24]
      D.Q. Zhu, C.C. Yang, J. Pan, and X.B. Li, Comparison of the oxidation behaviors of high FeO chromite and magnetite concentrates relevant to the induration of ferrous pellets, Metall. Mater. Trans. B, 47(2016), No. 5, p. 2919. doi: 10.1007/s11663-016-0770-2
      [25]
      F. Pan, Q.S. Zhu, Z. Du, and H.Y. Sun, Oxidation kinetics, structural changes and element migration during oxidation process of vanadium-titanium magnetite ore, J. Iron Steel Res. Int., 23(2016), No. 11, p. 1160. doi: 10.1016/S1006-706X(16)30171-6
      [26]
      Q.Y. Xu, Z.Z. Liu, Z.P. Li, J.J. Wang, and L. Zhou, The effect of carbon dissection of waste plastics on inhibiting the adhesion of fine iron ore particles during hydrogen reduction, Metals, 8(2018), No. 7, art. No. 523. doi: 10.3390/met8070523
      [27]
      Q.Y. Xu, Z.P. Li, Z.Z. Liu, J.J. Wang, and H.C. Wang, The effect of pressurized decarbonization of CO on inhibiting the adhesion of fine iron ore particles, Metals, 8(2018), No. 7, art. No. 525. doi: 10.3390/met8070525
      [28]
      M.I.A. Barustan and S.M. Jung, Morphology of iron and agglomeration behaviour during reduction of iron oxide fines, Met. Mater. Int., 25(2019), No. 4, p. 1083. doi: 10.1007/s12540-019-00259-6
      [29]
      H. Zheng, J. Schenk, D. Spreitzer, T. Wolfinger, and O. Daghagheleh, Review on the oxidation behaviors and kinetics of magnetite in particle scale, Steel Res. Int., 92(2021), No. 8, art. No. 2000687. doi: 10.1002/srin.202000687
      [30]
      J.D. Hancock and J.H. Sharp, Method of comparing solid-state kinetic data and its application to the decomposition of kaolinite, brucite, and BaCO3, J. Am. Ceram. Soc., 55(1972), No. 2, p. 74. doi: 10.1111/j.1151-2916.1972.tb11213.x
      [31]
      E.R. Monazam, R.W. Breault, and R. Siriwardane, Reduction of hematite (Fe2O3) to wüstite (FeO) by carbon monoxide (CO) for chemical looping combustion, Chem. Eng. J., 242(2014), p. 204. doi: 10.1016/j.cej.2013.12.040
      [32]
      E.R. Monazam, R.W. Breault, R. Siriwardane, G. Richards, and S. Carpenter, Kinetics of the reduction of hematite (Fe2O3) by methane (CH4) during chemical looping combustion: A global mechanism, Chem. Eng. J., 232(2013), p. 478. doi: 10.1016/j.cej.2013.07.091
      [33]
      H.S. Chen, Z. Zheng, Z.W. Chen, and X.T. Bi, Reduction of hematite (Fe2O3) to metallic iron (Fe) by CO in a micro fluidized bed reaction analyzer: A multistep kinetics study, Powder Technol., 316(2017), p. 410. doi: 10.1016/j.powtec.2017.02.067
      [34]
      H.S. Chen, Z. Zheng, Z.W. Chen, W.Z. Yu, and J.R. Yue, Multistep reduction kinetics of fine iron ore with carbon monoxide in a micro fluidized bed reaction analyzer, Metall. Mater. Trans. B, 48(2017), No. 2, p. 841. doi: 10.1007/s11663-016-0883-7
      [35]
      K. He, Z. Zheng, Z.W. Chen, H.S. Chen, and W.P. Hao, Kinetics of hydrogen reduction of Brazilian hematite in a micro-fluidized bed, Int. J. Hydrogen Energy, 46(2021), No. 5, p. 4592. doi: 10.1016/j.ijhydene.2020.10.263
      [36]
      K. He, Z. Zheng, and Z.W. Chen, Multistep reduction kinetics of Fe3O4 to Fe with CO in a micro fluidized bed reaction analyzer, Powder Technol., 360(2020), p. 1227. doi: 10.1016/j.powtec.2019.10.094
      [37]
      R. Nicolle and A. Rist, The mechanism of whisker growth in the reduction of wüstite, Metall. Trans. B, 10(1979), No. 3, p. 429. doi: 10.1007/BF02652516

    Catalog


    • /

      返回文章
      返回