留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 4
Apr.  2023

图(8)

数据统计

分享

计量
  • 文章访问数:  1206
  • HTML全文浏览量:  541
  • PDF下载量:  86
  • 被引次数: 0
Dongpeng Wang, Guang Chen, Anding Wang, Yuxin Wang, Yanxin Qiao, Zhenguang Liu, Zhixiang Qi, and Chain Tsuan Liu, Corrosion behavior of single- and poly-crystalline dual-phase TiAl–Ti3Al alloy in NaCl solution, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 689-696. https://doi.org/10.1007/s12613-022-2513-5
Cite this article as:
Dongpeng Wang, Guang Chen, Anding Wang, Yuxin Wang, Yanxin Qiao, Zhenguang Liu, Zhixiang Qi, and Chain Tsuan Liu, Corrosion behavior of single- and poly-crystalline dual-phase TiAl–Ti3Al alloy in NaCl solution, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 689-696. https://doi.org/10.1007/s12613-022-2513-5
引用本文 PDF XML SpringerLink
研究论文

单晶和多晶TiAl–Ti3Al双相合金在NaCl溶液中腐蚀行为的研究

  • 通讯作者:

    王冬朋    E-mail: dpwang@just.edu.cn

    王宇鑫    E-mail: ywan943@163.com

文章亮点

  • (1) 使用定向凝固方法制备了单晶TiAl-Ti3Al双相合金。
  • (2) 单晶TiAl–Ti3Al双相合金比多晶合金具有更高的耐蚀性能。
  • (3) 单晶合金中Nb元素的均匀分布提高了钝化膜的防护性能。
  • 钛合金由于具有优异的力学和耐腐蚀性能,使得其在航空航天等领域具有重要应用价值。然而,单晶结构对钛合金腐蚀行为的影响及其机制并不明确。为了阐明高强度TiAl合金中单晶结构与其腐蚀性能的关联性,使用电化学和表面表征等方法,本文深入探究了Ti–45Al–8Nb双相单晶及其多晶合金在NaCl溶液中腐蚀性能的差异。动电位极化曲线显示,双相单晶合金的腐蚀速率较低,相比于多晶合金,点蚀电位高出约280 mV。电化学阻抗谱和恒电位极化图显示单晶合金表面钝化膜的电荷转移电阻更高,这是因为其钝化膜中Nb元素含量较高。本文的结果表明,由于单晶合金微观结构和成分分布更加均匀,与多晶合金相比,双相Ti–45Al–8Nb单晶合金在NaCl溶液中具有更高的耐蚀性。
  • Research Article

    Corrosion behavior of single- and poly-crystalline dual-phase TiAl–Ti3Al alloy in NaCl solution

    + Author Affiliations
    • To clarify the correlation of single-crystalline structure with corrosion performance in high-strength TiAl alloys, electrochemical and surface characterization was performed by comparing Ti–45Al–8Nb dual-phase single crystals with their polycrystalline counterparts in NaCl solution. Polarization curves show a lower corrosion rate and a higher pitting potential of ~280 mV for the dual-phase single crystals. Electrochemical impedance spectroscopy and potentiostatic polarization plots revealed a higher impedance of the charge transfer through the compact passive film. Surface composition analysis indicated a compact film with more content of Nb, as twice as that in the film on the polycrystals. Our results reflect that the dual-phase Ti–45Al–8Nb single crystals possess a higher corrosion resistance in NaCl solution, compared with their polycrystalline counterpart, arising from a more homogeneous microstructure and composition distribution.
    • loading
    • [1]
      C.T. Liu, J.H. Schneibel, P.J. Maziasz, J.L. Wright, and D.S. Easton, Tensile properties and fracture toughness of TiAl alloys with controlled microstructures, Intermetallics, 4(1996), No. 6, p. 429. doi: 10.1016/0966-9795(96)00047-7
      [2]
      G. Chen, Y. Peng, G. Zheng, et al., Polysynthetic twinned TiAl single crystals for high-temperature applications, Nat. Mater., 15(2016), No. 8, p. 876. doi: 10.1038/nmat4677
      [3]
      J.C. Williams and E.A. Starke Jr, Progress in structural materials for aerospace systems, Acta Mater., 51(2003), No. 19, p. 5775. doi: 10.1016/j.actamat.2003.08.023
      [4]
      D. Wu, W.L. Wang, L.G. Zhang, et al., New high-strength Ti–Al–V–Mo alloy: From high-throughput composition design to mechanical properties, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1151. doi: 10.1007/s12613-019-1854-1
      [5]
      M. Yamaguchi, H. Inui, and K. Ito, High-temperature structural intermetallics, Acta Mater., 48(2000), No. 1, p. 307. doi: 10.1016/S1359-6454(99)00301-8
      [6]
      N.D. Tomashov, R.M. Altovsky, and G. Chernova, Passivity and corrosion resistance of titanium and its alloys, J. Electrochem. Soc., 108(1961), p. 113. doi: 10.1149/1.2428023
      [7]
      Y. Koizumi, A. Sugihara, H. Tsuchiya, et al., Selective dissolution of nanolamellar Ti–41at.%Al alloy single crystals, Acta Mater., 58(2010), No. 8, p. 2876. doi: 10.1016/j.actamat.2010.01.016
      [8]
      A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, et al., Corrosion resistance of ultra fine-grained Ti, Scripta Mater., 51(2004), No. 3, p. 225. doi: 10.1016/j.scriptamat.2004.04.011
      [9]
      B.D.C. Bell, S.T. Murphy, R.W. Grimes, and M.R. Wenman, The effect of Nb on the corrosion and hydrogen pick-up of Zr alloys, Acta Mater., 132(2017), p. 425. doi: 10.1016/j.actamat.2017.04.063
      [10]
      M. Geetha, U. Kamachi Mudali, A.K. Gogia, R. Asokamani, and B. Raj, Influence of microstructure and alloying elements on corrosion behavior of Ti–13Nb–13Zr alloy, Corros. Sci., 46(2004), No. 4, p. 877. doi: 10.1016/S0010-938X(03)00186-0
      [11]
      S.L. de Assis, S. Wolynec, and I. Costa, Corrosion characterization of titanium alloys by electrochemical techniques, Electrochim. Acta, 51(2006), No. 8-9, p. 1815. doi: 10.1016/j.electacta.2005.02.121
      [12]
      H.J. Rack and J.I. Qazi, Titanium alloys for biomedical applications, Mater. Sci. Eng. C, 26(2006), No. 8, p. 1269. doi: 10.1016/j.msec.2005.08.032
      [13]
      Z.B. Wang, H.X. Hu, Y.G. Zheng, W. Ke, and Y.X. Qiao, Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid, Corros. Sci., 103(2016), p. 50. doi: 10.1016/j.corsci.2015.11.003
      [14]
      I. Milošev, T. Kosec, and H.H. Strehblow, XPS and EIS study of the passive film formed on orthopaedic Ti–6Al–7Nb alloy in Hank’s physiological solution, Electrochim. Acta, 53(2008), No. 9, p. 3547. doi: 10.1016/j.electacta.2007.12.041
      [15]
      Y.X. Qiao, Y.P. Chen, L.L. Li, et al., Corrosion behavior of a nickel-free high-nitrogen stainless steel with hydrogen charging, JOM, 73(2021), No. 4, p. 1165. doi: 10.1007/s11837-021-04569-2
      [16]
      R. Merello, F.J. Botana, J. Botella, M.V. Matres, and M. Marcos, Influence of chemical composition on the pitting corrosion resistance of non-standard low-Ni high-Mn–N duplex stainless steels, Corros. Sci., 45(2003), No. 5, p. 909. doi: 10.1016/S0010-938X(02)00154-3
      [17]
      J.J. Dai, H.X. Zhang, C.X. Sun, et al., The effect of Nb and Si on the hot corrosion behaviors of TiAl coatings on a Ti–6Al–4V alloy, Corros. Sci., 168(2020), art. No. 108578. doi: 10.1016/j.corsci.2020.108578
      [18]
      T. Aburada, J. Fitz-Gerald, and J. Scully, Pitting and dealloying of solute-rich Al–Cu–Mg-based amorphous alloys: Effect of alloying with minor concentrations of nickel, J. Electrochem. Soc., 158(2011), No. 9, p. C253. doi: 10.1149/1.3604392
      [19]
      L. Wang, C.F. Dong, C. Man, et al., Effect of microstructure on corrosion behavior of high strength martensite steel—A literature review, Int. J. Miner. Metall. Mater., 28(2021), p. 754. doi: 10.1007/s12613-020-2242-6
      [20]
      P.Y. Guo, H. Sun, Y. Shao, et al., The evolution of microstructure and electrical performance in doped Mn–Co and Cu–Mn oxide layers with the extended oxidation time, Corros. Sci., 172(2020), art. No. 108738. doi: 10.1016/j.corsci.2020.108738
      [21]
      R.C. Zeng, L. Sun, Y.F. Zheng, H.Z. Cui, and E.H. Han, Corrosion and characterisation of dual phase Mg–Li–Ca alloy in Hank’s solution: The influence of microstructural features, Corros. Sci., 79(2014), p. 69. doi: 10.1016/j.corsci.2013.10.028
      [22]
      P.J. Wang, L.W. Ma, X.Q. Cheng, and X.G. Li, Influence of grain refinement on the corrosion behavior of metallic materials: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1112. doi: 10.1007/s12613-021-2308-0
      [23]
      D.P. Wang, S.L. Wang, and J.Q. Wang, Relationship between amorphous structure and corrosion behaviour in a Zr–Ni metallic glass, Corros. Sci., 59(2012), p. 88. doi: 10.1016/j.corsci.2012.02.017
      [24]
      P. Marcus, On some fundamental factors in the effect of alloying elements on passivation of alloys, Corros. Sci., 36(1994), No. 12, p. 2155. doi: 10.1016/0010-938X(94)90013-2
      [25]
      J. Xu, L. Liu, Z. Li, P. Munroe, and Z.H. Xie, Niobium addition enhancing the corrosion resistance of nanocrystalline Ti5Si3 coating in H2SO4 solution, Acta Mater., 63(2014), p. 245. doi: 10.1016/j.actamat.2013.10.040
      [26]
      Y. Deng, Z.M. Yin, K. Zhao, et al., Effects of Sc and Zr microalloying additions and aging time at 120°C on the corrosion behaviour of an Al–Zn–Mg alloy, Corros. Sci., 65(2012), p. 288. doi: 10.1016/j.corsci.2012.08.024
      [27]
      Z.P. Sun, W.Q. Wu, Y.N. Chen, et al., Microstructure characterization and hot corrosion mechanism of as-cast and heat treated high Nb containing TiAl alloy, Corros. Sci., 185(2021), art. No. 109399. doi: 10.1016/j.corsci.2021.109399
      [28]
      D.P. Wang, H.T. Zhang, P.Y. Guo, B.A. Sun, and Y.X. Wang, Nanoscale periodic distribution of energy dissipation at the shear band plane in a Zr-based metallic glass, Scripta Mater., 197(2021), art. No. 113784. doi: 10.1016/j.scriptamat.2021.113784
      [29]
      D.P. Wang, Z.X. Qi, H.T. Zhang, et al., Microscale mechanical properties of ultra-high-strength polysynthetic TiAl–Ti3Al single crystals, Mater. Sci. Eng. A, 732(2018), p. 14. doi: 10.1016/j.msea.2018.06.076
      [30]
      G.H. Liu, Z.D. Wang, T.L. Fu, et al., Study on the microstructure, phase transition and hardness for the TiAl–Nb alloy design during directional solidification, J. Alloys Compd., 650(2015), p. 45. doi: 10.1016/j.jallcom.2015.07.259
      [31]
      M.M. Verdian, K. Raeissi, and M. Salehi, Corrosion performance of HVOF and APS thermally sprayed NiTi intermetallic coatings in 3.5% NaCl solution, Corros. Sci., 52(2010), No. 3, p. 1052. doi: 10.1016/j.corsci.2009.11.034
      [32]
      S. Tamilselvi, V. Raman, and N. Rajendran, Corrosion behaviour of Ti–6Al–7Nb and Ti–6Al–4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy, Electrochim. Acta, 52(2006), No. 3, p. 839. doi: 10.1016/j.electacta.2006.06.018
      [33]
      Ö. Bayrak, H. Ghahramanzadeh Asl, and A. Ak, Protein adsorption, cell viability and corrosion properties of Ti6Al4V alloy treated by plasma oxidation and anodic oxidation, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1269. doi: 10.1007/s12613-020-2020-5
      [34]
      D.P. Wang, X. Li, Z. Chen, et al., Susceptibility of chloride ion concentration, temperature, and surface roughness on pitting corrosion of CoCrFeNi medium-entropy alloy, Mater. Corros., 73(2022), No. 1, p. 106. doi: 10.1002/maco.202112557
      [35]
      Q.X. Hu, X.L. Wang, X.W. Shen, and Z.M. Tan, Microstructure and corrosion resistance in bimetal materials of Q345 and 308 steel wire-arc additive manufacturing, Crystals, 11(2021), No. 11, art. No. 1401. doi: 10.3390/cryst11111401
      [36]
      J.W. Schultze and M.M. Lohrengel, Stability, reactivity and breakdown of passive films. Problems of recent and future research, Electrochim. Acta, 45(2000), No. 15-16, p. 2499. doi: 10.1016/S0013-4686(00)00347-9
      [37]
      R.M. Carranza and J.R. Galvele, Repassivation kinetics in stress corrosion cracking—I. Type AISI 304 stainless steel in chloride solutions, Corros. Sci., 28(1988), No. 3, p. 233. doi: 10.1016/0010-938X(88)90107-2
      [38]
      M.M. Lohrengel, Thin anodic oxide layers on aluminium and other valve metals: High field regime, Mater. Sci. Eng. R Rep., 11(1993), No. 6, p. 243. doi: 10.1016/0927-796X(93)90005-N
      [39]
      Z.M. Wang, Y.T. Ma, J. Zhang, et al., Influence of yttrium as a minority alloying element on the corrosion behavior in Fe-based bulk metallic glasses, Electrochim. Acta, 54(2008), No. 2, p. 261. doi: 10.1016/j.electacta.2008.08.017
      [40]
      D.P. Wang, J.W. Shen, Z. Chen, et al., Relationship of corrosion behavior between single-phase equiatomic CoCrNi, CoCrNiFe, CoCrNiFeMn alloys and their constituents in NaCl solution, Acta Metall. Sin. Engl. Lett., 34(2021), No. 11, p. 1574. doi: 10.1007/s40195-021-01281-7
      [41]
      M. Zhu, Q. Zhang, Y.F. Yuan, and S.Y. Guo, Effect of microstructure and passive film on corrosion resistance of 2507 super duplex stainless steel prepared by different cooling methods in simulated marine environment, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1100. doi: 10.1007/s12613-020-2094-0
      [42]
      J.L. Gu, Y. Shao, H.T. Bu, J.L. Jia, and K.F. Yao, An abnormal correlation between electron work function and corrosion resistance in Ti–Zr–Be–(Ni/Fe) metallic glasses, Corros. Sci., 165(2020), art. No. 108392. doi: 10.1016/j.corsci.2019.108392
      [43]
      S.J. Pang, T. Zhang, K. Asami, and A. Inoue, Synthesis of Fe–Cr–Mo–C–B–P bulk metallic glasses with high corrosion resistance, Acta Mater., 50(2002), No. 3, p. 489. doi: 10.1016/S1359-6454(01)00366-4
      [44]
      W. Li and D.Y. Li, Influence of surface morphology on corrosion and electronic behavior, Acta Mater., 54(2006), No. 2, p. 445. doi: 10.1016/j.actamat.2005.09.017
      [45]
      P. Leblanc and G. Frankel, A study of corrosion and pitting initiation of AA2024-T3 using atomic force microscopy, J. Electrochem. Soc., 149(2002), No. 6, p. B239. doi: 10.1149/1.1471546
      [46]
      W.H. Wang, Z.G. Zheng, B. Huang, J.W. Lai, Q. Zhou, L. Lei, and D.C. Zeng, Magnetocaloric effect, corrosion and mechanical properties of Mn1.05Fe0.9P0.5Si0.5Cux alloys, Intermetallics, 113(2019), art. No. 106539. doi: 10.1016/j.intermet.2019.106539
      [47]
      D.N. Wasnik, V. Kain, I. Samajdar, B. Verlinden, and P.K. de, Resistance to sensitization and intergranular corrosion through extreme randomization of grain boundaries, Acta Mater., 50(2002), No. 18, p. 4587. doi: 10.1016/S1359-6454(02)00306-3
      [48]
      S. Pawar, T.J.A. Slater, T.L. Burnett, et al., Crystallographic effects on the corrosion of twin roll cast AZ31 Mg alloy sheet, Acta Mater., 133(2017), p. 90. doi: 10.1016/j.actamat.2017.05.027
      [49]
      L.P. Huang, K.H. Chen, S. Li, and M. Song, Influence of high-temperature pre-precipitation on local corrosion behaviors of Al–Zn–Mg alloy, Scripta Mater., 56(2007), No. 4, p. 305. doi: 10.1016/j.scriptamat.2006.09.028

    Catalog


    • /

      返回文章
      返回