留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 12
Dec.  2022

图(9)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  674
  • HTML全文浏览量:  253
  • PDF下载量:  40
  • 被引次数: 0
Seyed Moien Faregh, Ghader Faraji, Mahmoud Mosavi Mashhadi, and Mohammad Eftekhari, Texture evolution and mechanical anisotropy of an ultrafine/nano-grained pure copper tube processed via hydrostatic tube cyclic expansion extrusion, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2241-2251. https://doi.org/10.1007/s12613-022-2514-4
Cite this article as:
Seyed Moien Faregh, Ghader Faraji, Mahmoud Mosavi Mashhadi, and Mohammad Eftekhari, Texture evolution and mechanical anisotropy of an ultrafine/nano-grained pure copper tube processed via hydrostatic tube cyclic expansion extrusion, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2241-2251. https://doi.org/10.1007/s12613-022-2514-4
引用本文 PDF XML SpringerLink
研究论文

静压循环膨胀挤压后超细/纳米晶粒纯铜管的织构演化与力学各向异性

  • 通讯作者:

    Ghader Faraji    E-mail: ghfaraji@ut.ac.ir

  • 采用静压循环膨胀挤压工艺(HTCEE)加工超细粒纯铜管,研究了其织构演化和力学各向异性行为。对于超细晶铜(UFG)管,在纵向和周向记录了不同的变形行为和显著的拉伸性能各向异性。研究结果表明HTCEE工艺使材料轴向的屈服强度和极限强度分别提高了3.6倍和1.67倍。同时,这一过程使周向的屈服强度和极限强度分别提高了1.15倍和1.12倍。作为力学各向异性判据的周向极限抗拉强度与轴向极限抗拉强度之比,对于退火粗晶粒和热处理后的UFG管分别为1.7和1.16。因此,结果表明HTCEE过程对力学各向异性有降低作用。此外,HTCEE工艺在两个方向上的延性损失都很低,这是HTCEE工艺的另一个优点。硬度测量显示,周向硬度值略有增加,这与拉伸试验的趋势一致。进行织构分析,以确定晶粒的分布,得到的{111}极点图证明了织构的演化,并证实了力学性能的各向异性。扫描电镜(SEM)显示,在两个正交方向拉伸试验后,出现了不同的断裂模式。
  • Research Article

    Texture evolution and mechanical anisotropy of an ultrafine/nano-grained pure copper tube processed via hydrostatic tube cyclic expansion extrusion

    + Author Affiliations
    • Texture evolution and mechanical anisotropic behavior of an ultrafine-grained (UFG) pure copper tube processed by recently introduced method of hydrostatic tube cyclic expansion extrusion (HTCEE) was investigated. For the UFG tube, different deformation behavior and a significant anisotropy in tensile properties were recorded along the longitudinal and peripheral directions. The HTCEE process increased the yield strength and the ultimate strength in the axial direction by 3.6 and 1.67 times, respectively. Also, this process increased the yield strength and the ultimate strength in the peripheral direction by 1.15 and 1.12 times, respectively. The ratio of ultimate tensile strength in the peripheral direction to that in the axial direction, as a criterion for mechanical anisotropy, are 1.7 and 1.16 for the as-annealed coarse-grained and the HTCEE processed UFG tube, respectively. The results are indicative of a reducing effect of the HTCEE process on the mechanical anisotropy. Besides, after HTCEE process, a low loss of ductility was observed in both directions, which is another advantage of HTCEE process. Hardness measurements revealed a slight increment of hardness values in the peripheral direction, which is in agreement with the trend of tensile tests. Texture analysis was conducted in order to determine the oriental distribution of the grains. The obtained {111} pole figures demonstrate the texture evolution and reaffirm the anisotropy observed in mechanical properties. Scanning electron microscopy micrographs showed that different modes of fracture occurred after tensile testing in the two orthogonal directions.
    • loading
    • [1]
      R.Z. Valiev and T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci., 51(2006), No. 7, p. 881. doi: 10.1016/j.pmatsci.2006.02.003
      [2]
      M. Eftekhari, G. Faraji, S. Nikbakht, R. Rashed, R. Sharifzadeh, R. Hildyard, and M. Mohammadpour, Processing and characterization of nanostructured Grade 2 Ti processed by combination of warm isothermal ECAP and extrusion, Mater. Sci. Eng. A, 703(2017), p. 551. doi: 10.1016/j.msea.2017.07.088
      [3]
      S.L. Liu and Y.H. Zhao, Mechanical properties, deformation and fracture mechanisms of bimodal Cu under tensile test, Rev. Adv. Mater. Sci., 60(2021), No. 1, p. 15. doi: 10.1515/rams-2021-0001
      [4]
      N. Liang, Y. Zhao, J. Wang, and Y. Zhu, Effect of grain structure on charpy impact behavior of copper, Sci. Rep., 7(2017), No. 1, p. 1. doi: 10.1038/s41598-016-0028-x
      [5]
      A. Al-Zubaydi, R.B. Figueiredo, Y. Huang, and T.G. Langdon, Structural and hardness inhomogeneities in Mg–Al–Zn alloys processed by high-pressure torsion, J. Mater. Sci., 48(2013), No. 13, p. 4661. doi: 10.1007/s10853-013-7176-1
      [6]
      J.B. Lin, Q.D. Wang, Y.J. Chen, M.P. Liu, and H.J. Roven, Microstructure and texture characteristics of ZK60 Mg alloy processed by cyclic extrusion and compression, Trans. Nonferrous Met. Soc. China, 20(2010), No. 11, p. 2081. doi: 10.1016/S1003-6326(09)60421-0
      [7]
      N. Pardis, C. Chen, M. Shahbaz, R. Ebrahimi, and L.S. Toth, Development of new routes of severe plastic deformation through cyclic expansion–extrusion process, Mater. Sci. Eng. A, 613(2014), p. 357. doi: 10.1016/j.msea.2014.06.074
      [8]
      M.T. Pérez-Prado, D. Valle, and O.A. Ruano, Grain refinement of Mg–Al–Zn alloys via accumulative roll bonding, Scripta Mater., 51(2004), No. 11, p. 1093. doi: 10.1016/j.scriptamat.2004.07.028
      [9]
      X.R. Liu, D.J. Wei, L.M. Zhuang, C. Cai, and Y.H. Zhao, Fabrication of high-strength graphene nanosheets/Cu composites by accumulative roll bonding, Mater. Sci. Eng. A, 642(2015), p. 1. doi: 10.1016/j.msea.2015.06.032
      [10]
      G. Faraji, M. Mosavi Mashhadi, and H.S. Kim, Tubular channel angular pressing (TCAP) as a novel severe plastic deformation method for cylindrical tubes, Mater. Lett., 65(2011), No. 19-20, p. 3009. doi: 10.1016/j.matlet.2011.06.039
      [11]
      M. Eftekhari, A. Fata, G. Faraji, and M. Mosavi Mashhadi, Hot tensile deformation behavior of Mg–Zn–Al magnesium alloy tubes processed by severe plastic deformation, J. Alloys Compd., 742(2018), p. 442. doi: 10.1016/j.jallcom.2018.01.246
      [12]
      A. Fata, M. Eftekhari, G. Faraji, and M. Mosavi Mashhadi, Enhanced hot tensile ductility of Mg–3Al–1Zn alloy thin-walled tubes processed via a combined severe plastic deformation, J. Mater. Eng. Perform., 27(2018), No. 5, p. 2330. doi: 10.1007/s11665-018-3350-6
      [13]
      A. Zangiabadi and M. Kazeminezhad, Development of a novel severe plastic deformation method for tubular materials: Tube channel pressing (TCP), Mater. Sci. Eng. A, 528(2011), No. 15, p. 5066. doi: 10.1016/j.msea.2011.03.012
      [14]
      H. Torabzadeh, G. Faraji, and E. Zalnezhad, Cyclic flaring and sinking (CFS) as a new severe plastic deformation method for thin-walled cylindrical tubes, Trans. Indian Inst. Met., 69(2016), No. 6, p. 1217. doi: 10.1007/s12666-015-0685-7
      [15]
      L.S. Tóth, M. Arzaghi, J.J. Fundenberger, B. Beausir, O. Bouaziz, and R. Arruffat-Massion, Severe plastic deformation of metals by high-pressure tube twisting, Scripta Mater., 60(2009), No. 3, p. 175. doi: 10.1016/j.scriptamat.2008.09.029
      [16]
      M. Motallebi Savarabadi, G. Faraji, and E. Zalnezhad, Hydrostatic tube cyclic expansion extrusion (HTCEE) as a new severe plastic deformation method for producing long nanostructured tubes, J. Alloys Compd., 785(2019), p. 163. doi: 10.1016/j.jallcom.2019.01.149
      [17]
      M. Motallebi Savarabadi, G. Faraji, and M. Eftekhari, Microstructure and mechanical properties of the commercially pure copper tube after processing by hydrostatic tube cyclic expansion extrusion (HTCEE), Met. Mater. Int., 27(2021), No. 6, p. 1686. doi: 10.1007/s12540-019-00525-7
      [18]
      V. Tavakkoli, M. Afrasiab, G. Faraji, and M. Mosavi Mashhadi, Severe mechanical anisotropy of high-strength ultrafine grained Cu–Zn tubes processed by parallel tubular channel angular pressing (PTCAP), Mater. Sci. Eng. A, 625(2015), p. 50. doi: 10.1016/j.msea.2014.11.085
      [19]
      G. Faraji, S. Roostae, A. Seyyed Nosrati, J.Y. Kang, and H.S. Kim, Microstructure and mechanical properties of ultra-fine-grained Al–Mg–Si tubes produced by parallel tubular channel angular pressing process, Metall. Mater. Trans. A, 46(2015), No. 4, p. 1805. doi: 10.1007/s11661-015-2740-8
      [20]
      L.X. Zhang, W.Z. Chen, W.C. Zhang, W.K. Wang, and E.D. Wang, Microstructure and mechanical properties of thin ZK61 magnesium alloy sheets by extrusion and multi-pass rolling with lowered temperature, J. Mater. Process. Technol., 237(2016), p. 65. doi: 10.1016/j.jmatprotec.2016.06.005
      [21]
      I. Sabirov, M.T. Perez-Prado, J.M. Molina-Aldareguia, I.P. Semenova, G.K. Salimgareeva, and R.Z. Valiev, Anisotropy of mechanical properties in high-strength ultra-fine-grained pure Ti processed via a complex severe plastic deformation route, Scripta Mater., 64(2011), No. 1, p. 69. doi: 10.1016/j.scriptamat.2010.09.006
      [22]
      J. Suh, J. Victoria-Hernández, D. Letzig, R. Golle, and W. Volk, Enhanced mechanical behavior and reduced mechanical anisotropy of AZ31 Mg alloy sheet processed by ECAP, Mater. Sci. Eng. A, 650(2016), p. 523. doi: 10.1016/j.msea.2015.09.058
      [23]
      C.S. Meredith and A.S. Khan, Texture evolution and anisotropy in the thermo-mechanical response of UFG Ti processed via equal channel angular pressing, Int. J. Plast., 30-31(2012), p. 202. doi: 10.1016/j.ijplas.2011.10.006
      [24]
      M. Al-Maharbi, I. Karaman, I.J. Beyerlein, D. Foley, K.T. Hartwig, L.J. Kecskes, and S.N. Mathaudhu, Microstructure, crystallographic texture, and plastic anisotropy evolution in an Mg alloy during equal channel angular extrusion processing, Mater. Sci. Eng. A, 528(2011), No. 25-26, p. 7616. doi: 10.1016/j.msea.2011.06.043
      [25]
      Q.Z. Mao, Y.S. Zhang, J.Z. Liu, and Y.H. Zhao, Breaking material property trade-offs via macrodesign of microstructure, Nano Lett., 21(2021), No. 7, p. 3191. doi: 10.1021/acs.nanolett.1c00451
      [26]
      A. Meng, X. Chen, J.F. Nie, L. Gu, Q.Z. Mao, and Y.H. Zhao, Microstructure evolution and mechanical properties of commercial pure titanium subjected to rotary swaging, J. Alloys Compd., 859(2021), art. No. 158222. doi: 10.1016/j.jallcom.2020.158222
      [27]
      Y.C. Wan, B. Tang, Y.H. Gao, L.L. Tang, G. Sha, B. Zhang, N.N. Liang, C.M. Liu, S.N. Jiang, Z.Y. Chen, X.Y. Guo, and Y.H. Zhao, Bulk nanocrystalline high-strength magnesium alloys prepared via rotary swaging, Acta Mater., 200(2020), p. 274. doi: 10.1016/j.actamat.2020.09.024
      [28]
      X. Chen, C.M. Liu, Y.C. Wan, S.N. Jiang, Z.Y. Chen, and Y.H. Zhao, Grain refinement mechanisms in gradient nanostructured AZ31B Mg alloy prepared via rotary swaging, Metall. Mater. Trans. A, 52(2021), No. 9, p. 4053. doi: 10.1007/s11661-021-06364-9
      [29]
      A. Babaei and M. Mosavi Mashhadi, Tubular pure copper grain refining by tube cyclic extrusion-compression (TCEC) as a severe plastic deformation technique, Prog. Nat. Sci. Mater. Int., 24(2014), No. 6, p. 623. doi: 10.1016/j.pnsc.2014.10.009
      [30]
      M. Eftekhari, G. Faraji, M. Bahrami, and M. Baniassadi, Hydrostatic tube cyclic extrusion compression as a novel severe plastic deformation method for fabricating long nanostructured tubes, Met. Mater. Int., 28(2022), No. 7, p. 1725. doi: 10.1007/s12540-021-01034-2
      [31]
      M. Eftekhari, G. Faraji, and M. Bahrami, Processing of commercially pure copper tubes by hydrostatic tube cyclic extrusion–compression (HTCEC) as a new SPD method, Arch. Civ. Mech. Eng., 21(2021), No. 3, art. No. 120. doi: 10.1007/s43452-021-00272-w
      [32]
      P.S. Roodposhti, N. Farahbakhsh, A. Sarkar, and K.L. Murty, Microstructural approach to equal channel angular processing of commercially pure titanium—A review, Trans. Nonferrous Met. Soc. China, 25(2015), No. 5, p. 1353. doi: 10.1016/S1003-6326(15)63734-7
      [33]
      F. Salimyanfard, M. Reza Toroghinejad, F. Ashrafizadeh, and M. Jafari, EBSD analysis of nano-structured copper processed by ECAP, Mater. Sci. Eng. A, 528(2011), No. 16-17, p. 5348. doi: 10.1016/j.msea.2011.03.075
      [34]
      A. Mishra, V. Richard, F. Grégori, R.J. Asaro, and M.A. Meyers, Microstructural evolution in copper processed by severe plastic deformation, Mater. Sci. Eng. A, 410-411(2005), p. 290. doi: 10.1016/j.msea.2005.08.201
      [35]
      G. Faraji, M. Mosavi Mashhadi, A.R. Bushroa, and A. Babaei, TEM analysis and determination of dislocation densities in nanostructured copper tube produced via parallel tubular channel angular pressing process, Mater. Sci. Eng. A, 563(2013), p. 193. doi: 10.1016/j.msea.2012.11.065
      [36]
      R.Z. Valiev and I.V. Alexandrov, Nanostructured materials from severe plastic deformation, Nanostructured Mater., 12(1999), No. 1-4, p. 35. doi: 10.1016/S0965-9773(99)00061-6
      [37]
      K. Máthis, J. Gubicza, and N.H. Nam, Microstructure and mechanical behavior of AZ91 Mg alloy processed by equal channel angular pressing, J. Alloys Compd., 394(2005), No. 1-2, p. 194. doi: 10.1016/j.jallcom.2004.10.050
      [38]
      B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf, Overview no. 96 evolution of f.c.c. deformation structures in polyslip, Acta Metall. Mater., 40(1992), No. 2, p. 205. doi: 10.1016/0956-7151(92)90296-Q
      [39]
      M. Javidikia and R. Hashemi, Mechanical anisotropy in ultra-fine grained aluminium tubes processed by parallel-tubular-channel angular pressing, Mater. Sci. Technol., 33(2017), No. 18, p. 2265. doi: 10.1080/02670836.2017.1368169
      [40]
      H. Abdolvand, G. Faraji, M.K.B. Givi, R. Hashemi, and M. Riazat, Evaluation of the microstructure and mechanical properties of the ultrafine grained thin-walled tubes processed by severe plastic deformation, Met. Mater. Int., 21(2015), No. 6, p. 1068. doi: 10.1007/s12540-015-5261-5
      [41]
      M. Ciemiorek, W. Chrominski, L. Olejnik, and M. Lewandowska, Evaluation of mechanical properties and anisotropy of ultra-fine grained 1050 aluminum sheets produced by incremental ECAP, Mater. Des., 130(2017), p. 392. doi: 10.1016/j.matdes.2017.05.069
      [42]
      M. Ebrahimi and F. Djavanroodi, Experimental and numerical analyses of pure copper during ECFE process as a novel severe plastic deformation method, Prog. Nat. Sci. Mater. Int., 24(2014), No. 1, p. 68. doi: 10.1016/j.pnsc.2014.01.013
      [43]
      A. Fattah-Alhosseini, O. Imantalab, Y. Mazaheri, and M.K. Keshavarz, Microstructural evolution, mechanical properties, and strain hardening behavior of ultrafine grained commercial pure copper during the accumulative roll bonding process, Mater. Sci. Eng. A, 650(2016), p. 8. doi: 10.1016/j.msea.2015.10.043
      [44]
      X.R. Liu, L.M. Zhuang, and Y.H. Zhao, Microstructure and mechanical properties of ultrafine-grained copper by accumulative roll bonding and subsequent annealing, Materials, 13(2020), No. 22, art. No. 5171. doi: 10.3390/ma13225171
      [45]
      M. Janeček, J. Čížek, M. Dopita, R. Král, and O. Srba, Mechanical properties and microstructure development of ultrafine-grained Cu processed by ECAP, Mater. Sci. Forum, 584-586(2008), p. 440. doi: 10.4028/www.scientific.net/MSF.584-586.440
      [46]
      A. Babaei, G. Faraji, M. Mosavi Mashhadi, and M. Hamdi, Repetitive forging (RF) using inclined punches as a new bulk severe plastic deformation method, Mater. Sci. Eng. A, 558(2012), p. 150. doi: 10.1016/j.msea.2012.07.103
      [47]
      R. Kocich, M. Greger, M. Kursa, I. Szurman, and A. Macháčková, Twist channel angular pressing (TCAP) as a method for increasing the efficiency of SPD, Mater. Sci. Eng. A, 527(2010), No. 23, p. 6386. doi: 10.1016/j.msea.2010.06.057
      [48]
      M. Shamsborhan and M. Ebrahimi, Production of nanostructure copper by planar twist channel angular extrusion process, J. Alloys Compd., 682(2016), p. 552. doi: 10.1016/j.jallcom.2016.05.012
      [49]
      Y. Ivanisenko, R. Kulagin, V. Fedorov, A. Mazilkin, T. Scherer, B. Baretzky, and H. Hahn, High Pressure Torsion Extrusion as a new severe plastic deformation process, Mater. Sci. Eng. A, 664(2016), p. 247. doi: 10.1016/j.msea.2016.04.008
      [50]
      K. Edalati, K. Imamura, T. Kiss, and Z. Horita, Equal-channel angular pressing and high-pressure torsion of pure copper: Evolution of electrical conductivity and hardness with strain, Mater. Trans., 53(2012), No. 1, p. 123. doi: 10.2320/matertrans.MD201109
      [51]
      S.S. Jamali, G. Faraji, and K. Abrinia, Hydrostatic radial forward tube extrusion as a new plastic deformation method for producing seamless tubes, Int. J. Adv. Manuf. Technol., 88(2017), No. 1-4, p. 291. doi: 10.1007/s00170-016-8754-6
      [52]
      G.I. Raab, E.P. Soshnikova, and R.Z. Valiev, Influence of temperature and hydrostatic pressure during equal-channel angular pressing on the microstructure of commercial-purity Ti, Mater. Sci. Eng. A, 387-389(2004), p. 674. doi: 10.1016/j.msea.2004.01.137
      [53]
      M. Hakamada, Y. Nakamoto, H. Matsumoto, H. Iwasaki, Y.Q. Chen, H. Kusuda, and M. Mabuchi, Relationship between hardness and grain size in electrodeposited copper films, Mater. Sci. Eng. A, 457(2007), No. 1-2, p. 120. doi: 10.1016/j.msea.2006.12.101
      [54]
      A. Azimi, S. Tutunchilar, G. Faraji, and M.K. Besharati Givi, Mechanical properties and microstructural evolution during multi-pass ECAR of Al 1100–O alloy, Mater. Des., 42(2012), p. 388. doi: 10.1016/j.matdes.2012.06.035
      [55]
      I.J. Beyerlein and L.S. Tóth, Texture evolution in equal-channel angular extrusion, Prog. Mater. Sci., 54(2009), No. 4, p. 427. doi: 10.1016/j.pmatsci.2009.01.001
      [56]
      W.J. Kim, C.W. An, Y.S. Kim, and S.I. Hong, Mechanical properties and microstructures of an AZ61 Mg Alloy produced by equal channel angular pressing, Scripta Mater., 47(2002), No. 1, p. 39. doi: 10.1016/S1359-6462(02)00094-5
      [57]
      H. Jafarzadeh and K. Abrinia, Fabrication of ultra-fine grained aluminium tubes by RTES technique, Mater. Charact., 102(2015), p. 1. doi: 10.1016/j.matchar.2014.12.025
      [58]
      M. Shaarbaf and M.R. Toroghinejad, Nano-grained copper strip produced by accumulative roll bonding process, Mater. Sci. Eng. A, 473(2008), No. 1-2, p. 28. doi: 10.1016/j.msea.2007.03.065
      [59]
      J. Deng, Y.C. Lin, S.S. Li, J. Chen, and Y. Ding, Hot tensile deformation and fracture behaviors of AZ31 magnesium alloy, Mater. Des., 49(2013), p. 209. doi: 10.1016/j.matdes.2013.01.023

    Catalog


    • /

      返回文章
      返回