留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 3
Mar.  2023

图(11)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  987
  • HTML全文浏览量:  406
  • PDF下载量:  50
  • 被引次数: 0
Qiuying Li, Yiheng Lu,  and Zhuoyan Shao, Fabrication of a flexible microwave absorber sheet based on a composite filler with fly ash as the core filled silicone rubber, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 548-558. https://doi.org/10.1007/s12613-022-2517-1
Cite this article as:
Qiuying Li, Yiheng Lu,  and Zhuoyan Shao, Fabrication of a flexible microwave absorber sheet based on a composite filler with fly ash as the core filled silicone rubber, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 548-558. https://doi.org/10.1007/s12613-022-2517-1
引用本文 PDF XML SpringerLink
研究论文

粉煤灰/NiFe2O4核壳填料/硅橡胶吸波复合材料的制备与性能

  • 通讯作者:

    李秋影    E-mail: liqy@ecust.edu.cn

文章亮点

  • (1) 制备了粉煤灰/NiFe2O4核壳填料
  • (2) 为粉煤灰的回收再利用提供了新的思路
  • (3) 制备了粉煤灰/NiFe2O4填充的硅橡胶吸波复合材料
  • (4) 制备的硅橡胶吸波复合材料高频下吸波性能优良,热稳定性、耐环境和疏水性能优良
  • (5) 为高频吸波材料的制备提供了新的思路
  • 首先以粉煤灰(FA),Fe(NO3)3∙9H2O和Ni(NO3)2∙6H2O为原料,采用改性的溶胶-凝胶方法,制备了以FA为核,以NiFe2O4为壳的核壳填料。然后,以硅橡胶为基体,采用FA/NiFe2O4核壳填料对其填充改性,制备了硅橡胶吸波复合材料。X射线衍射、红外光谱、X射线光电子能谱和扫描电子显微镜结果表明,NiFe2O4成功包覆在FA表面,且包覆均匀致密。核壳填料显著改善了硅橡胶的吸波性能, 17.5 GHz 下,材料的最小反射损耗值为−23.8 dB,有效吸收带宽高达12 GHz,原因为多重损耗机理,即界面极化损耗、磁损耗和多重反射损耗。与未填充的硅橡胶相比,硅橡胶吸波复合材料的热稳定性、柔韧性、耐环境性和疏水性均有所提高。本工作对粉煤灰的回收再利用和硅橡胶吸波复合材料的制备提供了新的思路。
  • Research Article

    Fabrication of a flexible microwave absorber sheet based on a composite filler with fly ash as the core filled silicone rubber

    + Author Affiliations
    • A new type of composite filler was designed by a modified sol–gel method using fly ash (FA), Fe(NO3)3∙9H2O, and Ni(NO3)2∙6H2O as raw materials. The composite filler was a spherical core–shell structure composed of FA as the core and NiFe2O4 as the shell. Further, the composite filler was added into the silicone rubber to fabricate the high temperature vulcanized microwave absorption materials; X-ray diffraction, fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscope confirmed that NiFe2O4 was successfully coated on the surface of FA and formed a uniform and continuous coating layer. As expected, silicone rubber filled with the composite filler had a minimum reflection loss of −23.8 dB at 17.5 GHz with the thickness of 1.8 mm, while the effective absorption bandwidth was as high as 12 GHz. The addition of the composite filler greatly enhanced the microwave absorption properties of the system, which was resulted from multiple losses mechanism: interface polarization losses, magnetic losses, and multiple reflection losses. Also, silicone rubber filled with the composite filler exhibited excellent thermal stability, flexibility, environmental resistance, and hydrophobicity compared with traditional silicone rubber. Therefore, this work not only responds to the green chemistry to achieve efficient FA recovery, but also devises a new strategy to prepare microwave absorption materials with strong potential for civilian applications.
    • loading
    • [1]
      C.Y. Chen, N.W. Pu, Y.M. Liu, et al., Microwave absorption properties of holey graphene/silicone rubber composites, Composite Part B, 135(2018), p. 119. doi: 10.1016/j.compositesb.2017.10.001
      [2]
      W.P. Li, L.Q. Zhu, J. Gu, and H.C. Liu, Microwave absorption properties of fabric coated absorbing material using modified carbonyl iron power, Composite Part B, 42(2011), No. 4, p. 626. doi: 10.1016/j.compositesb.2011.02.019
      [3]
      J.B. Kim, S.K. Lee, and C.G. Kim, Comparison study on the effect of carbon nano materials for single-layer microwave absorbers in X-band, Compos. Sci. Technol., 68(2008), No. 14, p. 2909. doi: 10.1016/j.compscitech.2007.10.035
      [4]
      B. Wen, X.X. Wang, W.Q. Cao, et al., Reduced graphene oxides: The thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world, Nanoscale, 6(2014), No. 11, p. 5754. doi: 10.1039/C3NR06717C
      [5]
      K.Q. Li, Q. Jiang, G. Chen, et al., Kinetics characteristics and microwave reduction behavior of walnut shell-pyrolusite blends, Bioresour. Technol., 319(2021), art. No. 124172. doi: 10.1016/j.biortech.2020.124172
      [6]
      K.Q. Li, J. Chen, J.H. Peng, R. Ruan, M. Omran, and G. Chen, Dielectric properties and thermal behavior of electrolytic manganese anode mud in microwave field, J. Hazard. Mater., 384(2020), art. No. 121227. doi: 10.1016/j.jhazmat.2019.121227
      [7]
      F. Ren, Z.Z. Guo, Y.F. Shi, et al., Lightweight and highly efficient electromagnetic wave-absorbing of 3D CNTs/GNS@CoFe2O4 ternary composite aerogels, J. Alloys Compd., 768(2018), p. 6. doi: 10.1016/j.jallcom.2018.07.209
      [8]
      G.H. Wang, Y. Zhao, F. Yang, Y. Zhang, M. Zhou, and G.B. Ji, Multifunctional integrated transparent film for efficient electromagnetic protection, Nano-Micro Lett., 14(2022), No. 1, art. No. 65. doi: 10.1007/s40820-022-00810-y
      [9]
      F. Wang, W.H. Gu, J.B. Chen, et al., The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability, Nano Res., 15(2022), No. 4, p. 3720. doi: 10.1007/s12274-021-3955-1
      [10]
      A.A. Al-Ghamdi, O.A. Al-Hartomy, F.R. Al-Solamy, et al., Conductive carbon black/magnetite hybrid fillers in microwave absorbing composites based on natural rubber, Composite Part B, 96(2016), p. 231. doi: 10.1016/j.compositesb.2016.04.039
      [11]
      Y.G. Xu, D.Y. Zhang, J. Cai, L.M. Yuan, and W.Q. Zhang, Microwave absorbing property of silicone rubber composites with added carbonyl iron particles and graphite platelet, J. Magn. Magn. Mater., 327(2013), p. 82. doi: 10.1016/j.jmmm.2012.09.045
      [12]
      G.Q. Wang, X.D. Chen, Y.P. Duan, and S.H. Liu, Electromagnetic properties of carbon black and Barium titanate composite materials, J. Alloys Compd., 454(2008), No. 1-2, p. 340. doi: 10.1016/j.jallcom.2006.12.077
      [13]
      Y.G. Xu, L.M. Yuan, J. Cai, and D.Y. Zhang, Smart absorbing property of composites with MWCNTs and carbonyl iron as the filler, J. Magn. Magn. Mater., 343(2013), p. 239. doi: 10.1016/j.jmmm.2013.04.051
      [14]
      Z.J. Li, H. Lin, S.Q. Ding, et al., Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon, Carbon, 167(2020), p. 148. doi: 10.1016/j.carbon.2020.05.070
      [15]
      V.K. Singh, A. Shukla, M.K. Patra, et al., Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite, Carbon, 50(2012), No. 6, p. 2202. doi: 10.1016/j.carbon.2012.01.033
      [16]
      A.M. Gama, M.C. Rezende, and C.C. Dantas, Dependence of microwave absorption properties on ferrite volume fraction in MnZn ferrite/rubber radar absorbing materials, J. Magn. Magn. Mater., 323(2011), No. 22, p. 2782. doi: 10.1016/j.jmmm.2011.05.052
      [17]
      A.P. Singh, A.K. Singh, A. Chandra, and S.K. Dhawan, Conduction mechanism in Polyaniline-flyash composite material for shielding against electromagnetic radiation in X-band & Ku band, AIP Adv., 1(2011), No. 2, art. No. 022147. doi: 10.1063/1.3608052
      [18]
      U. Rentsennorov, B. Davaabal, B. Dovchin, and J. Temuujin, Adsorption of Cr (III) from aqueous media on zeolite A prepared from fused fly ash by hydrothermal synthesis, J. Ceram. Process. Res., 22(2021), No. 2, p. 232.
      [19]
      P. Kunecki, R. Panek, M. Wdowin, T. Bień, and W. Franus, Influence of the fly ash fraction after grinding process on the hydrothermal synthesis efficiency of Na-A, Na-P1, Na-X and sodalite zeolite types, Int. J. Coal Sci. Technol., 8(2021), No. 2, p. 291. doi: 10.1007/s40789-020-00332-1
      [20]
      E. Horszczaruk and P. Brzozowski, Effects of fluidal fly ash on abrasion resistance of underwater repair concrete, Wear, 376-377(2017), p. 15. doi: 10.1016/j.wear.2017.01.051
      [21]
      J.C. Lee and B.D. Pandey, Bio-processing of solid wastes and secondary resources for metal extraction—A review, Waste Manage., 32(2012), No. 1, p. 3. doi: 10.1016/j.wasman.2011.08.010
      [22]
      M.G. Miricioiu, V.C. Niculescu, C. Filote, M.S. Raboaca, and G. Nechifor, Coal fly ash derived silica nanomaterial for MMMs-application in CO2/CH4 separation, Membranes, 11(2021), No. 2, art. No. 78. doi: 10.3390/membranes11020078
      [23]
      A. Arizmendi-Morquecho, A. Chávez-Valdez, and J. Alvarez-Quintana, High temperature thermal barrier coatings from recycled fly ash cenospheres, Appl. Therm. Eng., 48(2012), p. 117. doi: 10.1016/j.applthermaleng.2012.05.004
      [24]
      L.Q. Wei, R.X. Che, Y.J. Jiang, and B. Yu, Study on preparation and microwave absorption property of the core–nanoshell composite materials doped with La, J. Environ. Sci., 25(2013), No. Suppl, p. S27.
      [25]
      P.J. Bora, M. Porwal, K.J. Vinoy, Kishore, P.C. Ramamurthy, and G. Madras, Industrial waste fly ash cenosphere composites based broad band microwave absorber, Composite Part B, 134(2018), p. 151. doi: 10.1016/j.compositesb.2017.09.062
      [26]
      B.S. Zhu, Y.M. Tian, Y.K. Wang, et al., Synthesis and microwave absorption properties of Fe-loaded fly ash-based ceramic composites, ACS Appl. Electron. Mater., 2(2020), No. 10, p. 3307. doi: 10.1021/acsaelm.0c00630
      [27]
      B.S. Zhu, Y.Y. Li, Y.M. Tian, et al., Rational design of FeCo/C/FA by recycling of fly ash for electromagnetic pollution, Colloids Surf. A, 627(2021), art. No. 127127. doi: 10.1016/j.colsurfa.2021.127127
      [28]
      M. Angappan, P.J. Bora, K.J. Vinoy, Kishore, K. Vijayaraju, and P.C. Ramamurthy, Microwave absorption efficiency of poly (vinyl-butyral)/Ultra-thin nickel coated fly ash cenosphere composite, Surf. Interfaces, 19(2020), art. No. 100430. doi: 10.1016/j.surfin.2020.100430
      [29]
      S. Shukla, S. Seal, Z. Rahaman, and K. Scammon, Electroless copper coating of cenospheres using silver nitrate activator, Mater. Lett., 57(2002), No. 1, p. 151. doi: 10.1016/S0167-577X(02)00722-X
      [30]
      J.Q. Liu, Y.C. Wu, and R.J. Xue, Electroless plating Ni–Co–P alloy on the surface of fly ash cenospheres, Acta Phys. Chim. Sin., 22(2006), No. 2, p. 239. doi: 10.3866/PKU.WHXB20060222
      [31]
      H.Q. Tao, J.F. Yao, L.X. Zhang, and N.P. Xu, Preparation of magnetic ZSM-5/Ni/fly-ash hollow microspheres using fly-ash cenospheres as the template, Mater. Lett., 63(2009), No. 2, p. 203. doi: 10.1016/j.matlet.2008.09.034
      [32]
      P.J. Bora, N. Mallik, P.C. Ramamurthy, Kishore, and G. Madras, Poly(vinyl butyral)-polyaniline-magnetically functionalized fly ash cenosphere composite film for electromagnetic interference shielding, Composite Part B, 106(2016), p. 224. doi: 10.1016/j.compositesb.2016.09.035
      [33]
      W.Z. Li, T. Qiu, L.L. Wang, et al., Preparation and electromagnetic properties of core/shell polystyrene@polypyrrole@nickel composite microspheres, ACS Appl. Mater. Interfaces, 5(2013), No. 3, p. 883. doi: 10.1021/am302551d
      [34]
      Q. Li, J.F. Pang, B. Wang, et al., Preparation, characterization and microwave absorption properties of Barium-ferrite-coated fly-ash cenospheres, Adv. Powder Technol., 24(2013), No. 1, p. 288. doi: 10.1016/j.apt.2012.07.004
      [35]
      G.H. Mu, X.F. Pan, H.G. Shen, and M.Y. Gu, Preparation and magnetic properties of composite powders of hollow microspheres coated with Barium ferrite, Mater. Sci. Eng. A, 445-446(2007), p. 563. doi: 10.1016/j.msea.2006.09.078
      [36]
      B.S. Zhu, Y.M. Tian, Y.K. Wang, et al., Construction of Ni-loaded ceramic composites for efficient microwave absorption, Appl. Surf. Sci., 538(2021), art. No. 148018. doi: 10.1016/j.apsusc.2020.148018
      [37]
      S. Varshney, A. Ohlan, V.K. Jain, V.P. Dutta, and S.K. Dhawan, In situ synthesis of polypyrrole–γ-Fe2O3–fly ash nanocomposites for protection against EMI pollution, Ind. Eng. Chem. Res., 53(2014), No. 37, p. 14282. doi: 10.1021/ie500512d
      [38]
      M. Mishra, A.P. Singh, and S.K. Dhawan, Expanded graphite-nanoferrite-fly ash composites for shielding of electromagnetic pollution, J. Alloys Compd., 557(2013), p. 244. doi: 10.1016/j.jallcom.2013.01.004
      [39]
      A. Mali and A. Ataie, Structural characterization of nano-crystalline BaFe12O19 powders synthesized by Sol-gel combustion route, Scripta. Mater., 53(2005), No. 9, p. 1065. doi: 10.1016/j.scriptamat.2005.06.037
      [40]
      F.Z. Song, X.Q. Shen, M.Q. Liu, and J. Xiang, Formation and characterization of magnetic barium ferrite hollow fibers with high specific surface area via sol–gel process, Solid State Sci., 12(2010), No. 9, p. 1603. doi: 10.1016/j.solidstatesciences.2010.07.007
      [41]
      S.P. Li, Y. Huang, D. Ling, et al., Enhanced microwave-absorption with carbon-encapsulated Fe–Co particles on reduced graphene oxide nanosheets with nanoscale-holes in the basal plane, J. Colloid Interface Sci., 544(2019), p. 188. doi: 10.1016/j.jcis.2019.02.035
      [42]
      T. Yamashita and P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci., 254(2008), No. 8, p. 2441. doi: 10.1016/j.apsusc.2007.09.063
      [43]
      K. Wang, M.M. Chen, Z.S. He, et al., Hierarchical Fe3O4@C nanospheres derived from Fe2O3/MIL-100(Fe) with superior high-rate lithium storage performance, J. Alloys Compd., 755(2018), p. 154. doi: 10.1016/j.jallcom.2018.04.320
      [44]
      M.H. Flaifel, S.H. Ahmad, M.H. Abdullah, R. Rasid, A.H. Shaari, A.A. El-Saleh, and S. Appadu, Preparation, thermal, magnetic and microwave absorption properties of thermoplastic natural rubber matrix impregnated with NiZn ferrite nanoparticles, Compos. Sci. Technol., 96(2014), p. 103. doi: 10.1016/j.compscitech.2014.03.016
      [45]
      B.Y. Chen, D. Chen, Z.T. Kang, and Y.Z. Zhang, Preparation and microwave absorption properties of Ni–Co nanoferrites, J. Alloys Compd., 618(2015), p. 222. doi: 10.1016/j.jallcom.2014.08.195
      [46]
      C.M. Shang, G.B. Ji, W. Liu, X.M. Zhang, H.L. Lv, and Y.W. Du, One-pot in situ molten salt synthesis of octahedral Fe3O4 for efficient microwave absorption application, RSC Adv., 5(2015), No. 98, p. 80450. doi: 10.1039/C5RA15949K
      [47]
      G.W. Wang, X.L. Li, P. Wang, et al., Microwave absorption properties of flake-shaped Co particles composites at elevated temperature (293–673 K) in X band, J. Magn. Magn. Mater., 456(2018), p. 92. doi: 10.1016/j.jmmm.2018.02.024
      [48]
      Y. Li, H.F. Cheng, N.N. Wang, Y.J. Zhou, and T.T. Li, Magnetic and microwave absorption properties of Fe/TiO2 nanocomposites prepared by template electrodeposition, J. Alloys Compd., 763(2018), p. 421. doi: 10.1016/j.jallcom.2018.05.282
      [49]
      J.X. Qiu, L.J. Lan, H. Zhang, and M.Y. Gu, Microwave absorption properties of nanocomposite films of BaFe12O19 and TiO2 prepared by sol–gel method, Mater. Sci. Eng. B, 133(2006), No. 1-3, p. 191. doi: 10.1016/j.mseb.2006.06.049
      [50]
      J.W. Liu, J. Cheng, R.C. Che, J.J. Xu, M.M. Liu, and Z.W. Liu, Synthesis and microwave absorption properties of yolk–shell microspheres with magnetic iron oxide cores and hierarchical copper silicate shells, ACS Appl. Mater. Interfaces, 5(2013), No. 7, p. 2503. doi: 10.1021/am3030432
      [51]
      I. Kong, S. Hj Ahmad, M. Hj Abdullah, D. Hui, A. Nazlim Yusoff, and D. Puryanti, Magnetic and microwave absorbing properties of magnetite–thermoplastic natural rubber nanocomposites, J. Magn. Magn. Mater., 322(2010), No. 21, p. 3401. doi: 10.1016/j.jmmm.2010.06.036
      [52]
      X.X. Liu, Z.Y. Zhang, and Y.P. Wu, Absorption properties of carbon black/silicon carbide microwave absorbers, Composite Part B, 42(2011), No. 2, p. 326. doi: 10.1016/j.compositesb.2010.11.009
      [53]
      C. Wang, X.J. Han, P. Xu, et al., The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material, Appl. Phys. Lett., 98(2011), No. 7, art. No. 072906. doi: 10.1063/1.3555436
      [54]
      B.S. Zhu, Y.M. Tian, L.P. Liang, et al., Two-step preparation of fly ash-based composites for microwave absorption, Int. J. Appl. Ceram. Technol., 18(2021), No. 3, p. 1043. doi: 10.1111/ijac.13700
      [55]
      Y.C. Qing, W.C. Zhou, F. Luo, and D.M. Zhu, Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber, Carbon, 48(2010), No. 14, p. 4074. doi: 10.1016/j.carbon.2010.07.014
      [56]
      M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, and J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites, Carbon, 48(2010), No. 3, p. 788. doi: 10.1016/j.carbon.2009.10.028
      [57]
      X.F. Zhou, B.B. Wang, Z.R. Jia, et al., Dielectric behavior of Fe3N@C composites with green synthesis and their remarkable electromagnetic wave absorption performance, J. Colloid Interface Sci., 582(2021), p. 515. doi: 10.1016/j.jcis.2020.08.087
      [58]
      N. Rezazadeh and J. Rezazadeh, Fabrication of ultra-thin, hydrophobic and flexible electromagnetic wave absorber sheets based on nano-carbon/carbonyl iron in a polypyrrole/silicone rubber matrix, J. Magn. Magn. Mater., 475(2019), p. 201. doi: 10.1016/j.jmmm.2018.11.117

    Catalog


    • /

      返回文章
      返回