留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 10
Oct.  2022

图(10)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  5026
  • HTML全文浏览量:  2035
  • PDF下载量:  129
  • 被引次数: 0
Jianliang Zhang, Yang Li, Zhengjian Liu, Tengfei Wang, Yaozu Wang, Kejiang Li, Guilin Wang, Tao Xu, and Yong Zhang, Isothermal kinetic analysis on reduction of solid/liquid wustite by hydrogen, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp. 1830-1838. https://doi.org/10.1007/s12613-022-2518-0
Cite this article as:
Jianliang Zhang, Yang Li, Zhengjian Liu, Tengfei Wang, Yaozu Wang, Kejiang Li, Guilin Wang, Tao Xu, and Yong Zhang, Isothermal kinetic analysis on reduction of solid/liquid wustite by hydrogen, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp. 1830-1838. https://doi.org/10.1007/s12613-022-2518-0
引用本文 PDF XML SpringerLink
研究论文

氢气还原固/液态浮氏体等温动力学研究

  • 通讯作者:

    刘征建    E-mail: liuzhengjian@ustb.edu.cn

    王耀祖    E-mail: wgyozu@163.com

文章亮点

  • (1) 系统研究了纯H2与FeO在FeO–Fe体系分别为全固态和全熔融态时的等温还原规律。
  • (2) 明晰了纯H2等温还原FeO在气–固和气–液两种反应体系的反应动力学特征及差异。
  • (3) 解析了纯H2分别还原液态浮氏体时的动力学模型。
  • 优化传统炼铁工序能源结构,实现炼铁工序低碳、绿色发展是当前钢铁行业亟待解决的问题。近年来,熔融还原炼铁工艺取得了长足的进步,发展氢基熔融还原炼铁工艺为实现低碳炼铁提供了新的可能性。相比于氢气还原固态浮氏体的研究而言,关于氢气还原液态浮氏体的研究(即气-液反应过程)尚不充分。因此,本文采用热重实验的方法对纯氢气还原固态和液态浮氏体的反应过程进行了研究。研究结果表明,反应物浮氏体和产物金属铁的物相状态对终还原转化率影响不大,均可完全还原,但当浮氏体和金属铁均为液态时的化学反应条件优于二者均为固态时,其反应速度更快。动力学模型拟合结果表明,纯氢气还原固态和液态浮氏体的反应过程均符合幂函数法则模型(Mampel Power,n = 1/2)。通过等转化率法对还原过程表观活化能进行了计算,当反应物浮氏体和产物金属铁均为固态时,平均表观活化能为5.85 kJ·mol−1;二者均为液态时,平均表观活化能为104.74 kJ·mol−1。可见当反应物浮氏体和产物金属铁均为液态时,还原反应发生所需能量明显增大,但此时反应速率变快。
  • Research Article

    Isothermal kinetic analysis on reduction of solid/liquid wustite by hydrogen

    + Author Affiliations
    • Isothermal thermogravimetric analysis was used to study the reduction process of solid/liquid wustite by hydrogen. Results show that wustite in both states can be reduced entirely at all temperatures. The thermal and kinetic conditions for the hydrogen reduction of molten phases are better than those when the reactants and products are in the solid state, with a higher reaction rate. The hydrogen reduction of different wustite phases fits the Mampel Power model (power exponent n = 1/2) well, and this model is independent of the phase state. The average apparent activation energies of the reduction process calculated by the iso-conversional method are 5.85 kJ·mol−1 and 104.74 kJ·mol−1, when both reactants and products are in the solid state and the molten state, respectively. These values generally agree with those calculated by the model fitting method.
    • loading
    • [1]
      X.Y. Wang, B. Li, C. Lü, et al., China’s iron and steel industry carbon emissions peak pathways, Res. Environ. Sci., 35(2022), No. 2, p. 339.
      [2]
      Y.J. Shao, L. Xu, X.P. Liu, and H.Z. Chen, Discussion on solution of “carbon neutrality” in China’s steel production, China Metall., 32(2022), No. 4, p. 1.
      [3]
      Y. Xin, Y.K. Cui, J.L. Tian, et al., Application status and prospect of low carbon technology in iron and steel industry, Chin. J. Eng., 44(2022), No. 4, p. 801.
      [4]
      R. Liu, Z.F. Zhang, X.J. Liu, X. Li, H.Y. Li, and Q. Lü, Development trend and prospect of low-carbon green ironmaking technology, Iron Steel, 57(2022), No. 5, p. 1.
      [5]
      V. Vogl, M. Åhman, and L.J. Nilsson, Assessment of hydrogen direct reduction for fossil-free steelmaking, J. Cleaner Prod., 203(2018), p. 736. doi: 10.1016/j.jclepro.2018.08.279
      [6]
      T. Ariyama, Perspective toward long-term global goal for carbon dioxide mitigation in steel industry, Tetsu-to-Hagane, 105(2019), No. 6, p. 567. doi: 10.2355/tetsutohagane.TETSU-2019-008
      [7]
      F. Li, M.S. Chu, J. Tang, et al., Thermodynamic performance analysis and environmental impact assessment of an integrated system for hydrogen generation and steelmaking, Energy, 241(2022), art. No. 122922. doi: 10.1016/j.energy.2021.122922
      [8]
      J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, and Y.S. Zhou, Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 713. doi: 10.1007/s12613-020-2021-4
      [9]
      D. Spreitzer and J. Schenk, Reduction of iron oxides with hydrogen—A review, Steel Res. Int., 90(2019), No. 10, art. No. 1900108. doi: 10.1002/srin.201900108
      [10]
      M.N.A. Tahari, F. Salleh, T.S.T. Saharuddin, A. Samsuri, S. Samidin, and M.A. Yarmo, Influence of hydrogen and carbon monoxide on reduction behavior of iron oxide at high temperature: Effect on reduction gas concentrations, Int. J. Hydrogen Energy, 46(2021), No. 48, p. 24791. doi: 10.1016/j.ijhydene.2020.06.250
      [11]
      Z.Y. Chen, J. Dang, X.J. Hu, and H.Y. Yan, Reduction kinetics of hematite powder in hydrogen atmosphere at moderate temperatures, Metals, 8(2018), No. 10, art. No. 751. doi: 10.3390/met8100751
      [12]
      C.Y. Ding, X.W. Lv, G. Li, et al., Isothermal reduction of powdery 2CaO·Fe2O3 and CaO·Fe2O3 under H2 atmosphere, Int. J. Hydrogen Energy, 43(2018), No. 1, p. 24. doi: 10.1016/j.ijhydene.2017.11.075
      [13]
      H.B. Zuo, C. Wang, J.J. Dong, K.X. Jiao, and R.S. Xu, Reduction kinetics of iron oxide pellets with H2 and CO mixtures, Int. J. Miner. Metall. Mater., 22(2015), No. 7, p. 688. doi: 10.1007/s12613-015-1123-x
      [14]
      J. Tang, M.S. Chu, F. Li, Y.T. Tang, Z.G. Liu, and X.X. Xue, Reduction mechanism of high-chromium vanadium–titanium magnetite pellets by H2–CO–CO2 gas mixtures, Int. J. Miner. Metall. Mater., 22(2015), No. 6, p. 562. doi: 10.1007/s12613-015-1108-9
      [15]
      J.L. Zhang, G.Q. Zhang, Z.J. Liu, Z.H. Wang, K.J. Li, and X.B. Zhang, Production overview and main characteristics of HIsmelt process in Shandong Molong, China Metall., 28(2018), No. 5, p. 37.
      [16]
      R. Sripriya, T. Peeters, K. Meijer, C. Zeilstra, and D. van der Plas, Computational fluid dynamics and combustion modelling of HIsarna incinerator, Ironmaking Steelmaking, 43(2016), No. 3, p. 192. doi: 10.1179/1743281215Y.0000000031
      [17]
      L.Y. Xing, Z.S. Zou, Y.X. Qu, L. Shao, and J.Q. Zou, Gas-solid reduction behavior of in-flight fine hematite ore particles by hydrogen, Steel Res. Int., 90(2019), No. 1, art. No. 1800311. doi: 10.1002/srin.201800311
      [18]
      H. Katayama, S. Taguchi, and N. Tsuchiya, Reduction of iron oxide in molten slag with H2 gas, Tetsu-to-Hagane, 68(1982), No. 15, p. 2279. doi: 10.2355/tetsutohagane1955.68.15_2279
      [19]
      S. Ban-Ya, Y. Iguchi, and T. Nagasaka, Rate of reduction of liquid wustite with hydrogen, Tetsu-to-Hagane, 70(1984), No. 14, p. 1689. doi: 10.2355/tetsutohagane1955.70.14_1689
      [20]
      S. Hayashi and Y. Iguchi, Hydrogen reduction of liquid iron oxide fines in gas-conveyed systems, ISIJ Int., 34(1994), No. 7, p. 555. doi: 10.2355/isijinternational.34.555
      [21]
      T. Nagasaka, M. Hino, and S. Ban-Ya, Interfacial kinetics of hydrogen with liquid slag containing iron oxide, Metall. Mater. Trans. B, 31(2000), No. 5, p. 945. doi: 10.1007/s11663-000-0071-6
      [22]
      M.N. Seftejani and J. Schenk, Kinetics of molten iron oxides reduction using hydrogen, [in] 7th International Congress on Science and Technology of Steelmaking, Venice, 2018.
      [23]
      B.L. Hou, H.Y. Zhang, H.Z. Li, and Q.S. Zhu, Study on kinetics of iron oxide reduction by hydrogen, Chin. J. Chem. Eng., 20(2012), No. 1, p. 10. doi: 10.1016/S1004-9541(12)60357-7
      [24]
      W.K. Jozwiak, E. Kaczmarek, T.P. Maniecki, W. Ignaczak, and W. Maniukiewicz, Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres, Appl. Catal. A, 326(2007), No. 1, p. 17. doi: 10.1016/j.apcata.2007.03.021
      [25]
      Y. Zhou, Y.M. Gao, X.J. Ma, X. Zheng, M. Wang, and B. Wang, Preparation of FeO and its stability at room temperature, J. Wuhan Univ. Sci. Technol., 36(2013), No. 5, p. 383.
      [26]
      Y.S. Sun, Y.X. Han, P. Gao, and G.F. Li, Investigation of kinetics of coal based reduction of oolitic iron ore, Ironmaking Steelmaking, 41(2014), No. 10, p. 763. doi: 10.1179/1743281214Y.0000000196
      [27]
      S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta, 520(2011), No. 1-2, p. 1. doi: 10.1016/j.tca.2011.03.034
      [28]
      R.S. Xu, J.L. Zhang, G.W. Wang, et al., Isothermal kinetic analysis on fast pyrolysis of lump coal used in COREX process, J. Therm. Anal. Calorim., 123(2016), No. 1, p. 773. doi: 10.1007/s10973-015-4972-7
      [29]
      S. Ren and J.L. Zhang, Thermogravimetric analysis of anthracite and waste plastics by iso-conversional method, Thermochim. Acta, 561(2013), p. 36. doi: 10.1016/j.tca.2013.03.040
      [30]
      C.Y. Ding, X.W. Lv, S.W. Xuan, K. Tang, and C.G. Bai, Isothermal reduction kinetics of powdered hematite and calcium ferrite with CO–N2 gas mixtures, ISIJ Int., 56(2016), No. 12, p. 2118. doi: 10.2355/isijinternational.ISIJINT-2016-238

    Catalog


    • /

      返回文章
      返回