留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 1
Jan.  2023

图(4)

数据统计

分享

计量
  • 文章访问数:  1560
  • HTML全文浏览量:  420
  • PDF下载量:  138
  • 被引次数: 0
Jingjing Zhang, Bing Zhang, Xiubo Xie, Cui Ni, Chuanxin Hou, Xueqin Sun, Xiaoyang Yang, Yuping Zhang, Hideo Kimura, and Wei Du, Recent advances in the nanoconfinement of Mg-related hydrogen storage materials: A minor review, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 14-24. https://doi.org/10.1007/s12613-022-2519-z
Cite this article as:
Jingjing Zhang, Bing Zhang, Xiubo Xie, Cui Ni, Chuanxin Hou, Xueqin Sun, Xiaoyang Yang, Yuping Zhang, Hideo Kimura, and Wei Du, Recent advances in the nanoconfinement of Mg-related hydrogen storage materials: A minor review, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 14-24. https://doi.org/10.1007/s12613-022-2519-z
引用本文 PDF XML SpringerLink
特约综述

纳米限域镁基储氢材料研究进展:小综述

文章亮点

  • (1) 系统综述了纳米限域不同方法的优缺点。
  • (2) 从不同纳米限域支撑材料的角度进行了综述。
  • (3) 阐明了通过纳米限域法从降低颗粒尺寸的角度极大的改善了镁基储氢的性能。
  • 氢气因其高热值、来源丰富而被认为是一种理想的清洁能源。然而,要想以一种高密度、廉价和安全的方式储存氢是氢能蓬勃发展的主要限制。镁基储氢材料具有储氢容量大(7.6wt%)、性能好、成本低等优点,被认为是一种很有前途的固态储氢材料。但目前仍需要克服高热力学稳定性和缓慢动力学上的障碍。解决这些问题的方法大致分为添加催化剂和控制颗粒尺寸两种。而许多研究都表明镁颗粒可以很容易地进入到支撑模板的孔隙中,在这个过程中由于模板孔隙限制的原因可以有效的限制颗粒聚集从而达到控制材料尺寸的效果,这种方法我们把它称为纳米限域。本文综述了纳米限域对镁基储氢性能学的影响,总结了通过不同种类的限域材料原位氢化或熔融法等方式达到限域目的的研究,减低颗粒尺寸的同时可以显著改善储氢动力学性能。这项工作为利用纳米限域法设计高性能镁基材料的提供了应用前景。
  • Invited Review

    Recent advances in the nanoconfinement of Mg-related hydrogen storage materials: A minor review

    + Author Affiliations
    • Hydrogen is an ideal clean energy because of its high calorific value and abundance of sources. However, storing hydrogen in a compact, inexpensive, and safe manner is the main restriction on the extensive utilization of hydrogen energy. Magnesium (Mg)-based hydrogen storage material is considered a reliable solid hydrogen storage material with the advantages of high hydrogen storage capacity (7.6wt%), good performance, and low cost. However, the high thermodynamic stability and slow kinetics of Mg-based hydrogen storage materials have to be overcome. In this paper, we will review the recent advances in the nanoconfinement of Mg-related hydrogen storage materials by loading Mg particles on different supporting materials, including carbons, metal–organic frameworks, and other materials. Perspectives are also provided for designing high-performance Mg-based materials using nanoconfinement.
    • loading
    • [1]
      Q. Wang, Y.Q. Lai, F.Y. Liu, L.X. Jiang, M. Jia, and X.L. Wang, Sb2S3 nanorods/porous-carbon composite from natural stibnite ore as high-performance anode for lithium-ion batteries, Trans. Nonferrous Met. Soc. China, 31(2021), No. 7, p. 2051. doi: 10.1016/S1003-6326(21)65637-6
      [2]
      H.J. Cao, C. Pistidda, M.V. Castro Riglos, et al., Conversion of magnesium waste into a complex magnesium hydride system: Mg(NH2)2–LiH, Sustainable Energy Fuels, 4(2020), No. 4, p. 1915. doi: 10.1039/C9SE01284B
      [3]
      X.B. Zang, L.T. Li, Z.X. Sun, et al., A simple physical mixing method for MnO2/MnO nanocomposites with superior Zn2+ storage performance, Trans. Nonferrous Met. Soc. China, 30(2020), No. 12, p. 3347. doi: 10.1016/S1003-6326(20)65466-8
      [4]
      B.P. Zhang, G.L. Xia, D.L. Sun, F. Fang, and X.B. Yu, Magnesium hydride nanoparticles self-assembled on graphene as anode material for high-performance lithium-ion batteries, ACS Nano, 12(2018), No. 4, p. 3816. doi: 10.1021/acsnano.8b01033
      [5]
      Q.L. Zhu and Q. Xu, Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage, Energy Environ. Sci., 8(2015), No. 2, p. 478. doi: 10.1039/C4EE03690E
      [6]
      Z.J. Chen, K.O. Kirlikovali, K.B. Idrees, M.C. Wasson, and O.K. Farha, Porous materials for hydrogen storage, Chem, 8(2022), No. 3, p. 693. doi: 10.1016/j.chempr.2022.01.012
      [7]
      X. Lu, L.T. Zhang, H.J. Yu, et al., Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes, Chem. Eng. J., 422(2021), art. No. 130101. doi: 10.1016/j.cej.2021.130101
      [8]
      H. Cho, S. Hyeon, H. Park, J. Kim, and E.S. Cho, Ultrathin magnesium nanosheet for improved hydrogen storage with fishbone shaped one-dimensional carbon matrix, ACS Appl. Energy Mater., 3(2020), No. 9, p. 8143. doi: 10.1021/acsaem.0c01259
      [9]
      X.B. Xie, C.X. Hou, D. Wu, et al., Facile synthesis of various Co3O4/bio-activated carbon electrodes for hybrid capacitor device application, J. Alloys Compd., 891(2022), art. No. 161967. doi: 10.1016/j.jallcom.2021.161967
      [10]
      Q. Luo, J.D. Li, B. Li, B. Liu, H.Y. Shao, and Q. Li, Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism, J. Magnes. Alloys, 7(2019), No. 1, p. 58. doi: 10.1016/j.jma.2018.12.001
      [11]
      V. Berezovets, A. Kytsya, I. Zavaliy, and V.A. Yartys, Kinetics and mechanism of MgH2 hydrolysis in MgCl2 solutions, Int. J. Hydrogen Energy, 46(2021), No. 80, p. 40278. doi: 10.1016/j.ijhydene.2021.09.249
      [12]
      F. Tanaka, Y. Nakagawa, S. Isobe, and N. Hashimoto, Hydrogen absorption/desorption properties of light metal hydroxide systems, Int. J. Energy Res., 44(2020), No. 4, p. 2941. doi: 10.1002/er.5113
      [13]
      D.J. Han, K.R. Bang, H. Cho, and E.S. Cho, Effect of carbon nanoscaffolds on hydrogen storage performance of magnesium hydride, Korean J. Chem. Eng., 37(2020), No. 8, p. 1306. doi: 10.1007/s11814-020-0630-2
      [14]
      X.L. Zhang, Y.F. Liu, X. Zhang, J.J. Hu, M.X. Gao, and H.G. Pan, Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis, Mater. Today Nano, 9(2020), art. No. 100064. doi: 10.1016/j.mtnano.2019.100064
      [15]
      N.A. Ali, N.A. Sazelee, and M. Ismail, An overview of reactive hydride composite (RHC) for solid-state hydrogen storage materials, Int. J. Hydrogen Energy, 46(2021), No. 62, p. 31674. doi: 10.1016/j.ijhydene.2021.07.058
      [16]
      T. Sadhasivam, H.T. Kim, S. Jung, S.H. Roh, J.H. Park, and H.Y. Jung, Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review, Renewable Sustainable Energy Rev., 72(2017), p. 523. doi: 10.1016/j.rser.2017.01.107
      [17]
      M. Tian and C.X. Shang, Mg-based composites for enhanced hydrogen storage performance, Int. J. Hydrogen Energy, 44(2019), No. 1, p. 338. doi: 10.1016/j.ijhydene.2018.02.119
      [18]
      V.V. Berezovets, R.V. Denys, I.Y. Zavaliy, and Y.V. Kosarchyn, Effect of Ti-based nanosized additives on the hydrogen storage properties of MgH2, Int. J. Hydrogen Energy, 47(2022), No. 11, p. 7289. doi: 10.1016/j.ijhydene.2021.03.019
      [19]
      S. Zholdayakova, R. Gemma, H.H. Uchida, M. Sato, and Y. Matsumura, Mechanical composition control for Ti-based hydrogen storage alloys, e-J. Surf. Sci. Nanotechnol., 16(2018), p. 298. doi: 10.1380/ejssnt.2018.298
      [20]
      T.D. Huang, S.Y. Wu, H. Jiang, Y.P. Lu, T.M. Wang, and T.J. Li, Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1318. doi: 10.1007/s12613-020-2040-1
      [21]
      S. Chandra, P. Sharma, P. Muthukumar, and S.S.V. Tatiparti, Strategies for scaling-up LaNi5-based hydrogen storage system with internal conical fins and cooling tubes, Int. J. Hydrogen Energy, 46(2021), No. 36, p. 19031. doi: 10.1016/j.ijhydene.2021.03.056
      [22]
      N.X. Zhou, M. Yamaguchi, H. Miyaoka, and Y. Kojima, Temperature rise of LaNi5-based alloys by hydrogen adsorption, Chem. Commun., 57(2021), No. 74, p. 9374. doi: 10.1039/D1CC02358F
      [23]
      L. Fu, Research on battery technology of borohydride new hydrogen energy material, IOP Conf. Ser.: Earth Environ. Sci., 692(2021), No. 2, art. No. 022002. doi: 10.1088/1755-1315/692/2/022002
      [24]
      Q.W. Lai, Y.W. Yang, and K.F. Aguey-Zinsou, Nanoconfinement of borohydrides in hollow carbon spheres: Melt infiltration versus solvent impregnation for enhanced hydrogen storage, Int. J. Hydrogen Energy, 44(2019), No. 41, p. 23225. doi: 10.1016/j.ijhydene.2019.07.041
      [25]
      J.G. Yuan, H.X. Huang, Z. Jiang, et al., Ni-doped carbon nanotube-Mg(BH4)2 composites for hydrogen storage, ACS Appl. Nano Mater., 4(2021), No. 2, p. 1604. doi: 10.1021/acsanm.0c02738
      [26]
      C.A.G. Beatrice, B.R. Moreira, A.D. de Oliveira, F.R. Passador, G.R. de Almeida Neto, D.R. Leiva, and L.A. Pessan, Development of polymer nanocomposites with sodium alanate for hydrogen storage, Int. J. Hydrogen Energy, 45(2020), No. 8, p. 5337. doi: 10.1016/j.ijhydene.2019.06.169
      [27]
      N. Hosseinabadi, The beryllium/strontium doped hydrogen storage alanate nano powders for concentrating solar thermal power applications, Int. J. Hydrogen Energy, 46(2021), No. 7, p. 5025.
      [28]
      K. Suárez-Alcántara, J.R. Tena-Garcia, and R. Guerrero-Ortiz, Alanates, a comprehensive review, Materials, 12(2019), No. 17, art. No. 2724. doi: 10.3390/ma12172724
      [29]
      R. Kumar, A. Karkamkar, M. Bowden, and T. Autrey, Solid-state hydrogen rich boron-nitrogen compounds for energy storage, Chem. Soc. Rev., 48(2019), No. 21, p. 5350. doi: 10.1039/C9CS00442D
      [30]
      T.K. Nielsen, F. Besenbacher, and T.R. Jensen, Nanoconfined hydrides for energy storage, Nanoscale, 3(2011), No. 5, p. 2086. doi: 10.1039/c0nr00725k
      [31]
      K. Wang, X. Zhang, Z.H. Ren, X.L. Zhang, J.J. Hu, M.X. Gao, H.G. Pan, and Y.F. Liu, Nitrogen-stimulated superior catalytic activity of niobium oxide for fast full hydrogenation of magnesium at ambient temperature, Energy Storage Mater., 23(2019), p. 79. doi: 10.1016/j.ensm.2019.05.029
      [32]
      M.Y. Song and Y.J. Kwak, Hydrogenation and dehydrogenation behaviors of Mg2Ni synthesized by sintering pelletized mixtures under an Ar atmosphere, J. Nanosci. Nanotechnol., 19(2019), No. 10, p. 6571. doi: 10.1166/jnn.2019.17082
      [33]
      P. de Rango, D. Fruchart, V. Aptukov, and N. Skryabina, Fast forging: A new SPD method to synthesize Mg-based alloys for hydrogen storage, Int. J. Hydrogen Energy, 45(2020), No. 14, p. 7912. doi: 10.1016/j.ijhydene.2019.07.124
      [34]
      J. Zhang, L. He, Y. Yao, et al., Catalytic effect and mechanism of NiCu solid solutions on hydrogen storage properties of MgH2, Renewable Energy, 154(2020), p. 1229. doi: 10.1016/j.renene.2020.03.089
      [35]
      Z.Y. Lu, H.J. Yu, X. Lu, et al., Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH2, Rare Met., 40(2021), No. 11, p. 3195. doi: 10.1007/s12598-021-01764-7
      [36]
      X. Zhou, Z.F. Liu, F. Su, and Y.F. Fan, Magnesium composites with hybrid nano-reinforcements: 3D simulation of dynamic tensile response at elevated temperatures, Trans. Nonferrous Met. Soc. China, 31(2021), No. 3, p. 636. doi: 10.1016/S1003-6326(21)65525-5
      [37]
      J.F. Zhang, Z.N. Li, Y.F. Wu, et al., Recent advances on the thermal destabilization of Mg-based hydrogen storage materials, RSC Adv., 9(2019), No. 1, p. 408. doi: 10.1039/C8RA05596C
      [38]
      H. Yong, X. Wei, J.F. Hu, et al., Influence of Fe@C composite catalyst on the hydrogen storage properties of Mg–Ce–Y based alloy, Renewable Energy, 162(2020), p. 2153. doi: 10.1016/j.renene.2020.10.047
      [39]
      J.D. Li, B. Li, H.Y. Shao, W. Li, and H.J. Lin, Catalysis and downsizing in Mg-based hydrogen storage materials, Catalysts, 8(2018), No. 2, art. No. 89. doi: 10.3390/catal8020089
      [40]
      M.D. Seo, A. Kim, and H. Jung, Co metal nanoparticles incorporated three-dimensional mesoporous graphene nanohybrids for electrochemical hydrogen storage, J. Solid State Chem., 269(2019), p. 151. doi: 10.1016/j.jssc.2018.09.026
      [41]
      X.L. Yang, L. Ji, N.H. Yan, et al., Superior catalytic effects of FeCo nanosheets on MgH2 for hydrogen storage, Dalton Trans., 48(2019), No. 33, p. 12699. doi: 10.1039/C9DT02084E
      [42]
      J. Zhang, S. Yan, G.L. Xia, et al., Stabilization of low-valence transition metal towards advanced catalytic effects on the hydrogen storage performance of magnesium hydride, J. Magnes. Alloys, 9(2021), No. 2, p. 647. doi: 10.1016/j.jma.2020.02.029
      [43]
      D.M. Gattia, M. Jangir, and I.P. Jain, Study on nanostructured MgH2 with Fe and its oxides for hydrogen storage applications, J. Alloys Compd., 801(2019), p. 188. doi: 10.1016/j.jallcom.2019.06.067
      [44]
      M. Wiesinger, B. Maitland, H. Elsen, J. Pahl, and S. Harder, Stabilizing magnesium hydride complexes with neutral ligands, Eur. J. Inorg. Chem., 2019(2019), No. 41, p. 4433. doi: 10.1002/ejic.201900936
      [45]
      S.R. Chen, R.M. Tao, C. Guo, et al., A new trick for an old technology: Ion exchange syntheses of advanced energy storage and conversion nanomaterials, Energy Storage Mater., 41(2021), p. 758. doi: 10.1016/j.ensm.2021.06.043
      [46]
      Y.Y. Shang, C. Pistidda, G. Gizer, T. Klassen, and M. Dornheim, Mg-based materials for hydrogen storage, J. Magnes. Alloys, 9(2021), No. 6, p. 1837. doi: 10.1016/j.jma.2021.06.007
      [47]
      J.J. Liang and W.C.P. Kung, Confinement of Mg–MgH2 systems into carbon nanotubes changes hydrogen sorption energetics, J. Phys. Chem. B, 109(2005), No. 38, p. 17837. doi: 10.1021/jp052134a
      [48]
      Y.N. Liu, J.L. Zhu, Z.B. Liu, Y.F. Zhu, J.G. Zhang, and L.Q. Li, Magnesium nanoparticles with Pd decoration for hydrogen storage, Front. Chem., 7(2020), art. No. 949. doi: 10.3389/fchem.2019.00949
      [49]
      J. Asselin, C. Boukouvala, E.R. Hopper, Q.M. Ramasse, J.S. Biggins, and E. Ringe, Tents, chairs, tacos, kites, and rods: Shapes and plasmonic properties of singly twinned magnesium nanoparticles, ACS Nano, 14(2020), No. 5, p. 5968. doi: 10.1021/acsnano.0c01427
      [50]
      A. Schneemann, J.L. White, S. Kang, et al., Nanostructured metal hydrides for hydrogen storage, Chem. Rev., 118(2018), No. 22, p. 10775. doi: 10.1021/acs.chemrev.8b00313
      [51]
      F.Y. Cheng, Z.L. Tao, J. Liang, and J. Chen, Efficient hydrogen storage with the combination of lightweight Mg/MgH2 and nanostructures, Chem. Commun., 48(2012), No. 59, p. 7334. doi: 10.1039/c2cc30740e
      [52]
      C.Q. Zhou, C.D. Hu, Y.T. Li, and Q.A. Zhang, Crystallite growth characteristics of Mg during hydrogen desorption of MgH2, Prog. Nat. Sci. Mater. Int., 30(2020), No. 2, p. 246. doi: 10.1016/j.pnsc.2020.02.003
      [53]
      Q. Li, Y.F. Lu, Q. Luo, et al., Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials, J. Magnes. Alloys, 9(2021), No. 6, p. 1922. doi: 10.1016/j.jma.2021.10.002
      [54]
      Q. Li, X. Lin, Q. Luo, et al., Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32. doi: 10.1007/s12613-021-2337-8
      [55]
      F.M. Nyahuma, L.T. Zhang, M.Y. Song, et al., Significantly improved hydrogen storage behaviors in MgH2 with Nb nanocatalyst, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1788. doi: 10.1007/s12613-021-2303-5
      [56]
      Y. Jia, C.H. Sun, S.H. Shen, J. Zou, S.S. Mao, and X.D. Yao, Combination of nanosizing and interfacial effect: Future perspective for designing Mg-based nanomaterials for hydrogen storage, Renewable Sustainable Energy Rev., 44(2015), p. 289. doi: 10.1016/j.rser.2014.12.032
      [57]
      Y.S. Au, Y.G. Yan, K.P. de Jong, A. Remhof, and P.E. de Jongh, Pore confined synthesis of magnesium boron hydride nanoparticles, J. Phys. Chem. C, 118(2014), No. 36, p. 20832. doi: 10.1021/jp507568p
      [58]
      Z.Y. Han, M.L. Yeboah, R.Q. Jiang, X.Y. Li, and S.X. Zhou, Hybrid activation mechanism of thermal annealing for hydrogen storage of magnesium based on experimental evidence and theoretical validation, Appl. Surf. Sci., 504(2020), art. No. 144491. doi: 10.1016/j.apsusc.2019.144491
      [59]
      Z. Ding, H. Li, and L. Shaw, New insights into the solid-state hydrogen storage of nanostructured LiBH4–MgH2 system, Chem. Eng. J., 385(2020), art. No. 123856. doi: 10.1016/j.cej.2019.123856
      [60]
      Z.F. Wu, B. Tan, W.P. Lustig, et al., Magnesium based coordination polymers: Syntheses, structures, properties and applications, Coord. Chem. Rev., 399(2019), art. No. 213025. doi: 10.1016/j.ccr.2019.213025
      [61]
      K.F. Aguey-Zinsou and J.R. Ares-Fernández, Hydrogen in magnesium: New perspectives toward functional stores, Energy Environ. Sci., 3(2010), No. 5, p. 526. doi: 10.1039/b921645f
      [62]
      A.M. Abdalla, S. Hossain, O.B. Nisfindy, A.T. Azad, M. Dawood, and A.K. Azad, Hydrogen production, storage, transportation and key challenges with applications: A review, Energy Convers. Manage., 165(2018), p. 602. doi: 10.1016/j.enconman.2018.03.088
      [63]
      J. Cui, H. Wang, D.L. Sun, Q.A. Zhang, and M. Zhu, Realizing nano-confinement of magnesium for hydrogen storage using vapour transport deposition, Rare Met., 35(2016), No. 5, p. 401. doi: 10.1007/s12598-014-0272-9
      [64]
      H. Liu, P. Sun, R.C. Bowman Jr, Z.Z. Fang, Y. Liu, and C.S. Zhou, Effect of air exposure on hydrogen storage properties of catalyzed magnesium hydride, J. Power Sources, 454(2020), art. No. 227936. doi: 10.1016/j.jpowsour.2020.227936
      [65]
      H.Y. Shao, L.Q. He, H.J. Lin, and H.W. Li, Progress and trends in magnesium-based materials for energy-storage research: A review, Energy Technol., 6(2018), No. 3, p. 445. doi: 10.1002/ente.201700401
      [66]
      Y. Wang, Z.M. Ding, X.J. Li, et al., Improved hydrogen storage properties of MgH2 by nickel@nitrogen-doped carbon spheres, Dalton Trans., 49(2020), No. 11, p. 3495. doi: 10.1039/D0DT00025F
      [67]
      M. Lototskyy, J.M. Sibanyoni, R.V. Denys, M. Williams, B.G. Pollet, and V.A. Yartys, Magnesium-carbon hydrogen storage hybrid materials produced by reactive ball milling in hydrogen, Carbon, 57(2013), p. 146. doi: 10.1016/j.carbon.2013.01.058
      [68]
      M. Matsumoto, T. Kita, and K. Tanaka, Hydrogen adsorption/desorption properties of anhydrous metal oxalates; metal = Mg2+ and Ca2+, Bull. Chem. Soc. Jpn., 93(2020), No. 8, p. 985. doi: 10.1246/bcsj.20200084
      [69]
      M. Chen, Y.H. Pu, Z.Y. Li, et al., Synergy between metallic components of MoNi alloy for catalyzing highly efficient hydrogen storage of MgH2, Nano Res., 13(2020), No. 8, p. 2063. doi: 10.1007/s12274-020-2808-7
      [70]
      R. Bardhan, A.M. Ruminski, A. Brand, and J.J. Urban, Magnesium nanocrystal-polymer composites: A new platform for designer hydrogen storage materials, Energy Environ. Sci., 4(2011), No. 12, p. 4882. doi: 10.1039/c1ee02258j
      [71]
      D. Mukherjee and J. Okuda, Molecular magnesium hydrides, Angew. Chem. Int. Ed., 57(2018), No. 6, p. 1458. doi: 10.1002/anie.201708592
      [72]
      S. Cheung, W.Q. Deng, A.C.T. van Duin, and W.A. Goddard III, ReaxFFMgH reactive force field for magnesium hydride systems, J. Phys. Chem. A, 109(2005), No. 5, p. 851. doi: 10.1021/jp0460184
      [73]
      J.L. White, N.A. Strange, J.D. Sugar, et al., Melting of magnesium borohydride under high hydrogen pressure: Thermodynamic stability and effects of nanoconfinement, Chem. Mater., 32(2020), No. 13, p. 5604. doi: 10.1021/acs.chemmater.0c01050
      [74]
      Q.Y. Zhang, Y.K. Huang, T.C. Ma, et al., Facile synthesis of small MgH2 nanoparticles confined in different carbon materials for hydrogen storage, J. Alloys Compd., 825(2020), art. No. 153953. doi: 10.1016/j.jallcom.2020.153953
      [75]
      Z.W. Ma, Q.Y. Zhang, S. Panda, et al., In situ catalyzed and nanoconfined magnesium hydride nanocrystals in a Ni-MOF scaffold for hydrogen storage, Sustainable Energy Fuels, 4(2020), No. 9, p. 4694. doi: 10.1039/D0SE00818D
      [76]
      A. Schneemann, L.F. Wan, A.S. Lipton, et al., Nanoconfinement of molecular magnesium borohydride captured in a bipyridine-functionalized metal-organic framework, ACS Nano, 14(2020), No. 8, p. 10294. doi: 10.1021/acsnano.0c03764
      [77]
      P.A. Song, J.F. Dai, G.R. Chen, Y.M. Yu, Z.P. Fang, W.W. Lei, S.Y. Fu, H. Wang, and Z.G. Chen, Bioinspired design of strong, tough, and thermally stable polymeric materials via nanoconfinement, ACS Nano, 12(2018), No. 9, p. 9266. doi: 10.1021/acsnano.8b04002
      [78]
      D.P.E. de Jongh and D.P. Adelhelm, Nanosizing and nanoconfinement: New strategies towards meeting hydrogen storage goals, ChemSusChem, 3(2010), No. 12, p. 1332. doi: 10.1002/cssc.201000248
      [79]
      L. Wang, A. Rawal, M.Z. Quadir, and K.F. Aguey-Zinsou, Nanoconfined lithium aluminium hydride (LiAlH4) and hydrogen reversibility, Int. J. Hydrogen Energy, 42(2017), No. 20, p. 14144. doi: 10.1016/j.ijhydene.2017.04.104
      [80]
      X.B. Yu, Z.W. Tang, D.L. Sun, L.Z. Ouyang, and M. Zhu, Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications, Prog. Mater. Sci., 88(2017), p. 1. doi: 10.1016/j.pmatsci.2017.03.001
      [81]
      G.L. Xia, Y.B. Tan, X.W. Chen, et al., Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene, Adv. Mater., 27(2015), No. 39, p. 5981. doi: 10.1002/adma.201502005
      [82]
      G.L. Xia, Y.B. Tan, F.L. Wu, et al., Graphene-wrapped reversible reaction for advanced hydrogen storage, Nano Energy, 26(2016), p. 488. doi: 10.1016/j.nanoen.2016.06.016
      [83]
      T.K. Nielsen, K. Manickam, M. Hirscher, F. Besenbacher, and T.R. Jensen, Confinement of MgH2 nanoclusters within nanoporous aerogel scaffold materials, ACS Nano, 3(2009), No. 11, p. 3521. doi: 10.1021/nn901072w
      [84]
      P.E. de Jongh, R.W.P. Wagemans, T.M. Eggenhuisen, et al., The preparation of carbon-supported magnesium nanoparticles using melt infiltration, Chem. Mater., 19(2007), No. 24, p. 6052. doi: 10.1021/cm702205v
      [85]
      N.H. Yan, X. Lu, Z.Y. Lu, et al., Enhanced hydrogen storage properties of Mg by the synergistic effect of grain refinement and NiTiO3 nanoparticles, J. Magnes. Alloys, (2021). DOI: 10.1016/j.jma.2021.03.01
      [86]
      J.H. Guo, S.J. Li, Y. Su, and G. Chen, Theoretical study of hydrogen storage by spillover on porous carbon materials, Int. J. Hydrogen Energy, 45(2020), No. 48, p. 25900. doi: 10.1016/j.ijhydene.2019.12.146
      [87]
      X.B. Xie, B.L. Wang, Y.K. Wang, C. Ni, X.Q. Sun, and W. Du, Spinel structured MFe2O4 (M = Fe, Co, Ni, Mn, Zn) and their composites for microwave absorption: A review, Chem. Eng. J., 428(2022), art. No. 131160. doi: 10.1016/j.cej.2021.131160
      [88]
      T.T. le, C. Pistidda, V.H. Nguyen, et al., Nanoconfinement effects on hydrogen storage properties of MgH2 and LiBH4, Int. J. Hydrogen Energy, 46(2021), No. 46, p. 23723. doi: 10.1016/j.ijhydene.2021.04.150
      [89]
      R.J. White, R. Luque, V.L. Budarin, J.H. Clark, and D.J. Macquarrie, Supported metal nanoparticles on porous materials. Methods and applications, Chem. Soc. Rev., 38(2009), No. 2, p. 481. doi: 10.1039/B802654H
      [90]
      M. Paskevicius, H.Y. Tian, D.A. Sheppard, et al., Magnesium hydride formation within carbon aerogel, J. Phys. Chem. C, 115(2011), No. 5, p. 1757. doi: 10.1021/jp1100768
      [91]
      Y. Jia, C.H. Sun, L.N. Cheng, et al., Destabilization of Mg–H bonding through nano-interfacial confinement by unsaturated carbon for hydrogen desorption from MgH2, Phys. Chem. Chem. Phys., 15(2013), No. 16, p. 5814. doi: 10.1039/c3cp50515d
      [92]
      K.S. Xia, Q.M. Gao, C.D. Wu, S.Q. Song, and M.R. Ruan, Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3, Carbon, 45(2007), No. 10, p. 1989. doi: 10.1016/j.carbon.2007.06.002
      [93]
      S.S. Shinde, D.H. Kim, J.Y. Yu, and J.H. Lee, Self-assembled air-stable magnesium hydride embedded in 3-D activated carbon for reversible hydrogen storage, Nanoscale, 9(2017), No. 21, p. 7094. doi: 10.1039/C7NR01699A
      [94]
      L.M. Sanz-Moral, A. Navarrete, G. Sturm, et al., Release of hydrogen from nanoconfined hydrides by application of microwaves, J. Power Sources, 353(2017), p. 131. doi: 10.1016/j.jpowsour.2017.03.110
      [95]
      P. Agarwala, S.K. Pati, and L. Roy, Unravelling the possibility of hydrogen storage on naphthalene dicarboxylate-based MOF linkers: A theoretical perspective, Mol. Phys., 118(2020), No. 21-22, art. No. e1757169. doi: 10.1080/00268976.2020.1757169
      [96]
      W.W. Sun, S.F. Li, J.F. Mao, et al., Nanoconfinement of lithium borohydride in Cu-MOFs towards low temperature dehydrogenation, Dalton Trans., 40(2011), No. 21, p. 5673. doi: 10.1039/c0dt01727b
      [97]
      S. Atashrouz and M. Rahmani, Predicting hydrogen storage capacity of metal–organic frameworks using group method of data handling, Neural Comput. Appl., 32(2020), No. 18, p. 14851. doi: 10.1007/s00521-020-04837-3
      [98]
      K.K. Gangu, S. Maddila, S.B. Mukkamala, and S.B. Jonnalagadda, Characteristics of MOF, MWCNT and graphene containing materials for hydrogen storage: A review, J. Energy Chem., 30(2019), p. 132. doi: 10.1016/j.jechem.2018.04.012
      [99]
      A. Salehabadi, N. Morad, and M.I. Ahmad, A study on electrochemical hydrogen storage performance of β-copper phthalocyanine rectangular nanocuboids, Renewable Energy, 146(2020), p. 497. doi: 10.1016/j.renene.2019.06.176
      [100]
      A. Ahmed, Y.Y. Liu, J. Purewal, et al., Balancing gravimetric and volumetric hydrogen density in MOFs, Energy Environ. Sci., 10(2017), No. 11, p. 2459. doi: 10.1039/C7EE02477K
      [101]
      L. Ren, W. Zhu, Q.Y. Zhang, et al., MgH2 confinement in MOF-derived N-doped porous carbon nanofibers for enhanced hydrogen storage, Chem. Eng. J., 434(2022), art. No. 134701. doi: 10.1016/j.cej.2022.134701
      [102]
      Z.W. Ma, S. Panda, Q.Y. Zhang, et al., Improving hydrogen sorption performances of MgH2 through nanoconfinement in a mesoporous CoS nano-boxes scaffold, Chem. Eng. J., 406(2021), art. No. 126790. doi: 10.1016/j.cej.2020.126790
      [103]
      Q.W. Lai and K.F. Aguey-Zinsou, Destabilisation of Ca(BH4)2 and Mg(BH4)2 via confinement in nanoporous Cu2S hollow spheres, Sustainable Energy Fuels, 1(2017), No. 6, p. 1308. doi: 10.1039/C7SE00121E
      [104]
      X.B. Xie, X.J. Ma, P. Liu, J.X. Shang, X.G. Li, and T. Liu, Formation of multiple-phase catalysts for the hydrogen storage of Mg nanoparticles by adding flowerlike NiS, ACS Appl. Mater. Interfaces, 9(2017), No. 7, p. 5937. doi: 10.1021/acsami.6b13222
      [105]
      Y.L. Li, H. Yuan, Y.B. Chen, X.Y. Wei, K.Y. Sui, and Y.Q. Tan, Application and exploration of nanofibrous strategy in electrode design, J. Mater. Sci. Technol., 74(2021), p. 189. doi: 10.1016/j.jmst.2020.10.015
      [106]
      G.Z. Li, H. Yuan, J.J. Mou, et al., Electrochemical detection of nitrate with carbon nanofibers and copper co-modified carbon fiber electrodes, Compos. Commun., 29(2022), art. No. 101043. doi: 10.1016/j.coco.2021.101043
      [107]
      C.W. Duan, Y.T. Tian, X.Y. Wang, et al., Ni-CNTs as an efficient confining framework and catalyst for improving dehydriding/rehydriding properties of MgH2, Renewable Energy, 187(2022), p. 417. doi: 10.1016/j.renene.2022.01.048
      [108]
      B.G. Liu, B. Zhang, H.X. Huang, et al., Catalytic mechanism of in-situ Ni/C co-incorporation for hydrogen absorption of Mg, J. Magnes. Alloys, (2021). DOI: 10.1016/j.jma.2021.08.019
      [109]
      B. Liu, B. Zhang, X. Chen, et al., Remarkable enhancement and electronic mechanism for hydrogen storage kinetics of Mg nano-composite by a multi-valence Co-based catalyst, Mater. Today Nano, 17(2022), art. No. 100168. doi: 10.1016/j.mtnano.2021.100168

    Catalog


    • /

      返回文章
      返回