留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 3
Mar.  2023

图(7)

数据统计

分享

计量
  • 文章访问数:  758
  • HTML全文浏览量:  328
  • PDF下载量:  55
  • 被引次数: 0
Rao Zhang, Congpu Mu, Bochong Wang, Jianyong Xiang, Kun Zhai, Tianyu Xue,  and Fusheng Wen, Composites of In/C hexagonal nanorods and graphene nanosheets for high-performance electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 485-493. https://doi.org/10.1007/s12613-022-2520-6
Cite this article as:
Rao Zhang, Congpu Mu, Bochong Wang, Jianyong Xiang, Kun Zhai, Tianyu Xue,  and Fusheng Wen, Composites of In/C hexagonal nanorods and graphene nanosheets for high-performance electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 485-493. https://doi.org/10.1007/s12613-022-2520-6
引用本文 PDF XML SpringerLink
研究论文

In/C六边形纳米棒和石墨烯纳米片复合物的电磁波吸收性能研究

  • 通讯作者:

    牟从普    E-mail: congpumu@ysu.edu.cn

    温福昇    E-mail: wenfsh03@126.com

文章亮点

  • (1) 低温(450°C)热解金属有机骨架获得尺寸均匀地六边形纳米棒。
  • (2) 在1.14 mm厚度下,In/C-Gr复合材料的有效吸收带宽达到3.7 GHz。
  • (3) In/C-Gr复合材料对电磁波的最小反射损耗可以达到−43.7 dB。
  • 近年来,随着智能电子设备和高频无线通信技术的高速发展,电磁波辐射和污染问题受到越来越多的关注。如何消除电磁波辐射和污染已经成为当代研究的热点问题之一。电磁波吸收是解决电磁波辐射和污染的有效手段之一。金属有机骨架由于其密度低、机构新颖以及易制备等优点有利于电磁波吸收而被广泛地研究。在本文中,通过低温(450°C)热解金属铟有机骨架获得金属铟纳米颗粒/多孔碳(In/C)六边形纳米棒复合物。由于低的热解温度,使得In/C纳米棒电导率较低,从而导致对电磁波的介电损耗低。因此,为了提高In/C纳米棒的电导率,通过引入高电导率的石墨烯(graphene, Gr)纳米片来调节In/C纳米棒的电磁波吸收性能。研究结果表明,Gr纳米片的引入可以有效地改善In/C纳米棒的电磁参数,从而实现对电磁波的高效吸收。在1.30 mm厚度下,In/C-Gr-4复合材料对电磁波的最小反射损耗可以达到-43.7 dB。当厚度减小到1.14 mm时,In/C-Gr-4复合材料的最小反射损耗仍高达-39.3 dB,并且有效吸收带宽为3.7 GHz (从14.3到18.0 GHz)。因此,本工作表明In/C-Gr-4复合材料具有优异的电磁波吸收性能(即薄厚度下高的反射损耗和宽的有效吸收带宽)。
  • Research Article

    Composites of In/C hexagonal nanorods and graphene nanosheets for high-performance electromagnetic wave absorption

    + Author Affiliations
    • In recent years, electromagnetic wave (EMW) absorption has been extensively investigated for solving EMW radiation and pollution. The metal–organic frameworks (MOFs) have attracted attention due to their low density and unique structure, which can meet the requirements of strong reflection loss (RL) and wide absorption bandwidth of EMW absorption materials. In this manuscript, indium nanoparticles/porous carbon (In/C) nanorods composites were prepared via the pyrolysis of nanorods-like In-MOFs at a low temperature of 450°C. Indium nanoparticles are evenly attached and embedded on porous carbon. Low electrical conductivity of In/C nanorods is unfavorable to EMW absorption performance, which is due to the low temperature carbonization. Thus, graphene (Gr) nanosheets with high electrical conductivity are introduced to adjust electromagnetic parameters of In/C nanorods for enhancing EMW absorption. The minimum RL of the In/C-Gr-4 composite is up to −43.7 dB with a thin thickness of 1.30 mm. In addition, when the thickness is further reduced to 1.14 mm, the minimum RL of −39.3 dB at 16.1 GHz and effective absorption bandwidth of 3.7 GHz (from 14.3 to 18.0 GHz) can be achieved. This work indicates that In/C-Gr composites show excellent EMW absorption performance.
    • loading
    • Supplementary Information-s12613-022-2520-6.docx
    • [1]
      Y.C. Du, W.W. Liu, R. Qiang, et al., Shell thickness-dependent microwave absorption of core–shell Fe3O4@C composites, ACS Appl. Mater. Interfaces, 6(2014), No. 15, p. 12997. doi: 10.1021/am502910d
      [2]
      Y. Zhang, Y. Huang, T.F. Zhang, et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam, Adv. Mater., 27(2015), No. 12, p. 2049. doi: 10.1002/adma.201405788
      [3]
      X. Du, B.C. Wang, C.P. Mu, et al., Facile synthesis of carbon-encapsulated Ni nanoparticles embedded into porous graphite sheets as high-performance microwave absorber, ACS Sustainable Chem. Eng., 6(2018), No. 12, p. 16179. doi: 10.1021/acssuschemeng.8b02944
      [4]
      Z.L. Zhang, Y.Y. Lv, X.Q. Chen, et al., Porous flower-like Ni/C composites derived from MOFs toward high-performance electromagnetic wave absorption, J. Magn. Magn. Mater., 487(2019), art. No. 165334. doi: 10.1016/j.jmmm.2019.165334
      [5]
      L. Wang, X. Yu, X. Li, J. Zhang, M. Wang, and R. Che, MOF-derived yolk–shell Ni@C@ZnO schottky contact structure for enhanced microwave absorption, Chem. Eng. J., 383(2020), p. 123099. doi: 10.1016/j.cej.2019.123099
      [6]
      C. Peng, Y. Zhang, and B. Zhang, MOF-derived jujube pit shaped C/Co composites with hierarchical structure for electromagnetic absorption, J. Alloys Compd., 826(2020), p. 154203. doi: 10.1016/j.jallcom.2020.154203
      [7]
      W. Li, Y. Liu, F. Guo, Y. Du, and Y. Chen, Self-assembly sandwich-like Fe, Co, or Ni nanoparticles/reduced graphene oxide composites with excellent microwave absorption performance, Appl. Surf. Sci., 562(2021), p. 150212. doi: 10.1016/j.apsusc.2021.150212
      [8]
      X. Wang, Y. Lu, T. Zhu, S. Chang, and W. Wang, CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption, Chem. Eng. J., 388(2020), p. 124317. doi: 10.1016/j.cej.2020.124317
      [9]
      Z. Jia, K. Lin, G. Wu, H. Xing, and H. Wu, Recent progresses of high-temperature microwave-absorbing materials, Nano, 13(2018), No. 06, p. 1830005. doi: 10.1142/S1793292018300050
      [10]
      L. Cui, X. Han, F. Wang, H. Zhao, and Y. Du, A review on recent advances in carbon-based dielectric system for microwave absorption, J. Mater. Sci., 56(2021), No. 18, p. 10782. doi: 10.1007/s10853-021-05941-y
      [11]
      C.P Mu, J.F. Song, B.C. Wang, et al., Facile-synthesized carbonaceous photonic crystals/magnetic particle nanohybrids with heterostructure as an excellent microwave absorber, J. Alloys Compd., 741(2018), p. 814. doi: 10.1016/j.jallcom.2018.01.180
      [12]
      J. Yan, Y. Huang, Y.H. Yan, L. Ding, and P.B. Liu, High-performance electromagnetic wave absorbers based on two kinds of nickel-based MOF-derived Ni@C microspheres, ACS Appl. Mater. Interfaces, 11(2019), No. 43, p. 40781. doi: 10.1021/acsami.9b12850
      [13]
      F. Ren, Z.Z. Guo, Y.F. Shi, et al., Lightweight and highly efficient electromagnetic wave-absorbing of 3D CNTs/GNS@CoFe2O4 ternary composite aerogels, J. Alloys Compd., 768(2018), p. 6. doi: 10.1016/j.jallcom.2018.07.209
      [14]
      J.C. Shu, X.Y. Yang, X.R. Zhang, et al., Tailoring MOF-based materials to tune electromagnetic property for great microwave absorbers and devices, Carbon, 162(2020), p. 157. doi: 10.1016/j.carbon.2020.02.047
      [15]
      Q. Wang and D. Astruc, State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis, Chem. Rev., 120(2020), No. 2, p. 1438. doi: 10.1021/acs.chemrev.9b00223
      [16]
      X.L. Wu, Z.J. Li, H. Zhou, et al., A microporous Ce-based MOF with the octahedron cage for highly selective adsorption towards xenon over krypton, RSC Adv., 11(2021), No. 49, p. 30918. doi: 10.1039/D1RA04824D
      [17]
      Y.L. Wang, S.H. Yang, H.Y. Wang, G.S. Wang, X.B. Sun, and P.G. Yin, Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber, Carbon, 167(2020), p. 485. doi: 10.1016/j.carbon.2020.06.014
      [18]
      S.F. Seyedpour, M. Dadashi Firouzjaei, A. Rahimpour, et al., Toward sustainable tackling of biofouling implications and improved performance of TFC FO membranes modified by Ag-MOF nanorods, ACS Appl. Mater. Interfaces, 12(2020), No. 34, p. 38285. doi: 10.1021/acsami.0c13029
      [19]
      Y.H. Cui, Z.H. Liu, X.X. Li, et al., MOF-derived yolk-shell Co@ZnO/Ni@NC nanocage: Structure control and electromagnetic wave absorption performance, J. Colloid Interface Sci., 600(2021), p. 99. doi: 10.1016/j.jcis.2021.05.015
      [20]
      C. Liu, Q. Sun, L.N. Lin, et al., Ternary MOF-on-MOF heterostructures with controllable architectural and compositional complexity via multiple selective assembly, Nat. Commun., 11(2020), No. 1, art. No. 4971. doi: 10.1038/s41467-020-18776-z
      [21]
      S.Y. Wang, X. Ke, S.T. Zhong, et al., Bimetallic zeolitic imidazolate frameworks-derived porous carbon-based materials with efficient synergistic microwave absorption properties: The role of calcining temperature, RSC Adv., 7(2017), No. 73, p. 46436. doi: 10.1039/C7RA08882E
      [22]
      H.H. Zhu, Q.Z. Jiao, R.R. Fu, et al., Cu/NC@Co/NC composites derived from core–shell Cu-MOF@Co-MOF and their electromagnetic wave absorption properties, J. Colloid Interface Sci., 613(2022), p. 182. doi: 10.1016/j.jcis.2021.11.166
      [23]
      C. Xu, L. Wang, X. Li, et al., Hierarchical magnetic network constructed by CoFe nanoparticles suspended within “tubes on rods” matrix toward enhanced microwave absorption, Nanomicro Lett., 13(2021), No. 1, art. No. 47. doi: 10.1007/s40820-020-00572-5
      [24]
      X.K. Wang, Y.K. Guan, R.R. Zhang, et al., Facile synthesis of cobalt nanoparticles embedded in a rod-like porous carbon matrix with excellent electromagnetic wave absorption performance, Ceram. Int., 47(2021), No. 1, p. 643. doi: 10.1016/j.ceramint.2020.08.172
      [25]
      Y. Wang, X.C. Di, Z. Lu, R.R. Cheng, X.M. Wu, and P.H. Gao, Controllable heterogeneous interfaces of cobalt/carbon nanosheets/rGO composite derived from metal–organic frameworks for high-efficiency microwave attenuation, Carbon, 187(2022), p. 404. doi: 10.1016/j.carbon.2021.11.027
      [26]
      W. Liu, L. Liu, G.B. Ji, et al., Composition design and structural characterization of MOF-derived composites with controllable electromagnetic properties, ACS Sustainable Chem. Eng., 5(2017), No. 9, p. 7961. doi: 10.1021/acssuschemeng.7b01514
      [27]
      J.N. Ma, W. Liu, X.H. Liang, et al., Nanoporous TiO2/C composites synthesized from directly pyrolysis of a Ti-based MOFs MIL-125(Ti) for efficient microwave absorption, J. Alloys Compd., 728(2017), p. 138. doi: 10.1016/j.jallcom.2017.08.274
      [28]
      X. Zhang, J. Qiao, C. Liu, et al., A MOF-derived ZrO2/C nanocomposite for efficient electromagnetic wave absorption, Inorg. Chem. Front., 7(2020), No. 2, p. 385. doi: 10.1039/C9QI01259A
      [29]
      L. Wu, M. Xue, S.L. Qiu, G. Chaplais, A. Simon-Masseron, and J. Patarin, Amino-modified MIL-68(In) with enhanced hydrogen and carbon dioxide sorption enthalpy, Microporous Mesoporous Mater., 157(2012), p. 75. doi: 10.1016/j.micromeso.2011.12.034
      [30]
      L.N. Jin, X.Y. Qian, J.G. Wang, H. Aslan, and M.D. Dong, MIL-68 (In) nano-rods for the removal of Congo red dye from aqueous solution, J. Colloid Interface Sci., 453(2015), p. 270. doi: 10.1016/j.jcis.2015.05.005
      [31]
      C. Yang, S.C. Wu, J.H. Cheng, and Y.C. Chen, Indium-based metal–organic framework/graphite oxide composite as an efficient adsorbent in the adsorption of rhodamine B from aqueous solution, J. Alloys Compd., 687(2016), p. 804. doi: 10.1016/j.jallcom.2016.06.173
      [32]
      R.R. Xie, X.N. Guo, Z.H. Zhang, and D.X. Xue, An oxamide-functionalized ternary indium–organic framework, Inorg. Chem. Commun., 113(2020), art. No. 107762. doi: 10.1016/j.inoche.2020.107762
      [33]
      V. Kumar Maka, P. Tamuly, S. Jindal, and J. Narasimha Moorthy, Control of In-MOF topologies and tuning of porosity through ligand structure, functionality and interpenetration: Selective cationic dye exchange, Appl. Mater. Today, 19(2020), art. No. 100613. doi: 10.1016/j.apmt.2020.100613
      [34]
      P.H. Fathima Fasna and S. Sasi, A comprehensive overview on advanced sensing applications of functional metal organic frameworks (MOFs), ChemistrySelect, 6(2021), No. 25, p. 6365. doi: 10.1002/slct.202101533
      [35]
      S.T. Meek, J.A. Greathouse, and M.D. Allendorf, Metal–organic frameworks: A rapidly growing class of versatile nanoporous materials, Adv. Mater., 23(2011), No. 2, p. 249. doi: 10.1002/adma.201002854
      [36]
      T. Liu, R.J. Zhang, X.S. Zhang, K. Liu, Y.Y. Liu, and P.T. Yan, One-step room-temperature preparation of expanded graphite, Carbon, 119(2017), p. 544. doi: 10.1016/j.carbon.2017.04.076
      [37]
      C. Volkringer, M. Meddouri, T. Loiseau, et al., The Kagomé topology of the gallium and indium metal–organic framework types with a MIL-68 structure: Synthesis, XRD, solid-state NMR characterizations, and hydrogen adsorption, Inorg. Chem., 47(2008), No. 24, p. 11892. doi: 10.1021/ic801624v
      [38]
      J.W. Ma, H.Q. Fan, X.K. Zheng, et al., Facile metal–organic frameworks-templated fabrication of hollow indium oxide microstructures for chlorine detection at low temperature, J. Hazard. Mater., 387(2020), art. No. 122017. doi: 10.1016/j.jhazmat.2020.122017
      [39]
      T. Maeda, S. Sugimoto, T. Kagotani, N. Tezuka, and K. Inomata, Effect of the soft/hard exchange interaction on natural resonance frequency and electromagnetic wave absorption of the rare earth-iron-boron compounds, J. Magn. Magn. Mater., 281(2004), No. 2-3, p. 195. doi: 10.1016/j.jmmm.2004.04.105
      [40]
      Y.Z. Jiao, S.Y. Cheng, F. Wu, et al., MOF−Guest complex derived Cu/C nanocomposites with multiple heterogeneous interfaces for excellent electromagnetic waves absorption, Composites Part B, 211(2021), art. No. 108643. doi: 10.1016/j.compositesb.2021.108643
      [41]
      J. Xiang, J.L. Li, X.H. Zhang, Q. Ye, J.H. Xu, and X.Q. Shen, Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers, J. Mater. Chem. A, 2(2014), No. 40, p. 16905. doi: 10.1039/C4TA03732D
      [42]
      Z.H. Yang, H.L. Lv, and R.B. Wu, Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation, Nano Res., 9(2016), No. 12, p. 3671. doi: 10.1007/s12274-016-1238-z
      [43]
      K.F. Wang, Y.J. Chen, R. Tian, et al., Porous Co–C core–shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance, ACS Appl. Mater. Interfaces, 10(2018), No. 13, p. 11333. doi: 10.1021/acsami.8b00965
      [44]
      B. Wen, M.S. Cao, Z.L. Hou, et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites, Carbon, 65(2013), p. 124. doi: 10.1016/j.carbon.2013.07.110
      [45]
      T.Y. Chen, S. Jiang, L.L. Li, et al., Vertically aligned MnO2 nanostructures on carbon fibers with tunable electromagnetic wave absorption performance, Appl. Surf. Sci., 589(2022), art. No. 152858. doi: 10.1016/j.apsusc.2022.152858
      [46]
      R.L. Yang, B.C. Wang, J.Y. Xiang, et al., Fabrication of NiCo2-anchored graphene nanosheets by liquid-phase exfoliation for excellent microwave absorbers, ACS Appl. Mater. Interfaces, 9(2017), No. 14, p. 12673. doi: 10.1021/acsami.6b16144
      [47]
      D. Lan, M. Qin, J.L. Liu, G.L. Wu, Y. Zhang, and H.J. Wu, Novel binary cobalt nickel oxide hollowed-out spheres for electromagnetic absorption applications, Chem. Eng. J., 382(2020), art. No. 122797. doi: 10.1016/j.cej.2019.122797
      [48]
      Y. Ji, C.P. Mu, B.C. Wang, et al., Facile preparation of CoS2 nanoparticles embedded into polyaniline with tunable electromagnetic wave absorption performance, Mater. Chem. Phys., 246(2020), art. No. 122835. doi: 10.1016/j.matchemphys.2020.122835
      [49]
      C. Zhang, C.P. Mu, J.Y. Xiang, et al., Microwave absorption characteristics of CH3NH3PbI3 perovskite/carbon nanotube composites, J. Mater. Sci., 52(2017), No. 22, p. 13023. doi: 10.1007/s10853-017-1426-6
      [50]
      B.C. Wang, Y. Ji, C.P. Mu, et al., Well-controlled core–shell structures based on Fe3O4 nanospheres coated by polyaniline for highly efficient microwave absorption, Appl. Surf. Sci., 591(2022), art. No. 153176. doi: 10.1016/j.apsusc.2022.153176

    Catalog


    • /

      返回文章
      返回