Cite this article as: |
Rao Zhang, Congpu Mu, Bochong Wang, Jianyong Xiang, Kun Zhai, Tianyu Xue, and Fusheng Wen, Composites of In/C hexagonal nanorods and graphene nanosheets for high-performance electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 485-493. https://doi.org/10.1007/s12613-022-2520-6 |
牟从普 E-mail: congpumu@ysu.edu.cn
温福昇 E-mail: wenfsh03@126.com
Supplementary Information-s12613-022-2520-6.docx |
[1] |
Y.C. Du, W.W. Liu, R. Qiang, et al., Shell thickness-dependent microwave absorption of core–shell Fe3O4@C composites, ACS Appl. Mater. Interfaces, 6(2014), No. 15, p. 12997. doi: 10.1021/am502910d
|
[2] |
Y. Zhang, Y. Huang, T.F. Zhang, et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam, Adv. Mater., 27(2015), No. 12, p. 2049. doi: 10.1002/adma.201405788
|
[3] |
X. Du, B.C. Wang, C.P. Mu, et al., Facile synthesis of carbon-encapsulated Ni nanoparticles embedded into porous graphite sheets as high-performance microwave absorber, ACS Sustainable Chem. Eng., 6(2018), No. 12, p. 16179. doi: 10.1021/acssuschemeng.8b02944
|
[4] |
Z.L. Zhang, Y.Y. Lv, X.Q. Chen, et al., Porous flower-like Ni/C composites derived from MOFs toward high-performance electromagnetic wave absorption, J. Magn. Magn. Mater., 487(2019), art. No. 165334. doi: 10.1016/j.jmmm.2019.165334
|
[5] |
L. Wang, X. Yu, X. Li, J. Zhang, M. Wang, and R. Che, MOF-derived yolk–shell Ni@C@ZnO schottky contact structure for enhanced microwave absorption, Chem. Eng. J., 383(2020), p. 123099. doi: 10.1016/j.cej.2019.123099
|
[6] |
C. Peng, Y. Zhang, and B. Zhang, MOF-derived jujube pit shaped C/Co composites with hierarchical structure for electromagnetic absorption, J. Alloys Compd., 826(2020), p. 154203. doi: 10.1016/j.jallcom.2020.154203
|
[7] |
W. Li, Y. Liu, F. Guo, Y. Du, and Y. Chen, Self-assembly sandwich-like Fe, Co, or Ni nanoparticles/reduced graphene oxide composites with excellent microwave absorption performance, Appl. Surf. Sci., 562(2021), p. 150212. doi: 10.1016/j.apsusc.2021.150212
|
[8] |
X. Wang, Y. Lu, T. Zhu, S. Chang, and W. Wang, CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption, Chem. Eng. J., 388(2020), p. 124317. doi: 10.1016/j.cej.2020.124317
|
[9] |
Z. Jia, K. Lin, G. Wu, H. Xing, and H. Wu, Recent progresses of high-temperature microwave-absorbing materials, Nano, 13(2018), No. 06, p. 1830005. doi: 10.1142/S1793292018300050
|
[10] |
L. Cui, X. Han, F. Wang, H. Zhao, and Y. Du, A review on recent advances in carbon-based dielectric system for microwave absorption, J. Mater. Sci., 56(2021), No. 18, p. 10782. doi: 10.1007/s10853-021-05941-y
|
[11] |
C.P Mu, J.F. Song, B.C. Wang, et al., Facile-synthesized carbonaceous photonic crystals/magnetic particle nanohybrids with heterostructure as an excellent microwave absorber, J. Alloys Compd., 741(2018), p. 814. doi: 10.1016/j.jallcom.2018.01.180
|
[12] |
J. Yan, Y. Huang, Y.H. Yan, L. Ding, and P.B. Liu, High-performance electromagnetic wave absorbers based on two kinds of nickel-based MOF-derived Ni@C microspheres, ACS Appl. Mater. Interfaces, 11(2019), No. 43, p. 40781. doi: 10.1021/acsami.9b12850
|
[13] |
F. Ren, Z.Z. Guo, Y.F. Shi, et al., Lightweight and highly efficient electromagnetic wave-absorbing of 3D CNTs/GNS@CoFe2O4 ternary composite aerogels, J. Alloys Compd., 768(2018), p. 6. doi: 10.1016/j.jallcom.2018.07.209
|
[14] |
J.C. Shu, X.Y. Yang, X.R. Zhang, et al., Tailoring MOF-based materials to tune electromagnetic property for great microwave absorbers and devices, Carbon, 162(2020), p. 157. doi: 10.1016/j.carbon.2020.02.047
|
[15] |
Q. Wang and D. Astruc, State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis, Chem. Rev., 120(2020), No. 2, p. 1438. doi: 10.1021/acs.chemrev.9b00223
|
[16] |
X.L. Wu, Z.J. Li, H. Zhou, et al., A microporous Ce-based MOF with the octahedron cage for highly selective adsorption towards xenon over krypton, RSC Adv., 11(2021), No. 49, p. 30918. doi: 10.1039/D1RA04824D
|
[17] |
Y.L. Wang, S.H. Yang, H.Y. Wang, G.S. Wang, X.B. Sun, and P.G. Yin, Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber, Carbon, 167(2020), p. 485. doi: 10.1016/j.carbon.2020.06.014
|
[18] |
S.F. Seyedpour, M. Dadashi Firouzjaei, A. Rahimpour, et al., Toward sustainable tackling of biofouling implications and improved performance of TFC FO membranes modified by Ag-MOF nanorods, ACS Appl. Mater. Interfaces, 12(2020), No. 34, p. 38285. doi: 10.1021/acsami.0c13029
|
[19] |
Y.H. Cui, Z.H. Liu, X.X. Li, et al., MOF-derived yolk-shell Co@ZnO/Ni@NC nanocage: Structure control and electromagnetic wave absorption performance, J. Colloid Interface Sci., 600(2021), p. 99. doi: 10.1016/j.jcis.2021.05.015
|
[20] |
C. Liu, Q. Sun, L.N. Lin, et al., Ternary MOF-on-MOF heterostructures with controllable architectural and compositional complexity via multiple selective assembly, Nat. Commun., 11(2020), No. 1, art. No. 4971. doi: 10.1038/s41467-020-18776-z
|
[21] |
S.Y. Wang, X. Ke, S.T. Zhong, et al., Bimetallic zeolitic imidazolate frameworks-derived porous carbon-based materials with efficient synergistic microwave absorption properties: The role of calcining temperature, RSC Adv., 7(2017), No. 73, p. 46436. doi: 10.1039/C7RA08882E
|
[22] |
H.H. Zhu, Q.Z. Jiao, R.R. Fu, et al., Cu/NC@Co/NC composites derived from core–shell Cu-MOF@Co-MOF and their electromagnetic wave absorption properties, J. Colloid Interface Sci., 613(2022), p. 182. doi: 10.1016/j.jcis.2021.11.166
|
[23] |
C. Xu, L. Wang, X. Li, et al., Hierarchical magnetic network constructed by CoFe nanoparticles suspended within “tubes on rods” matrix toward enhanced microwave absorption, Nanomicro Lett., 13(2021), No. 1, art. No. 47. doi: 10.1007/s40820-020-00572-5
|
[24] |
X.K. Wang, Y.K. Guan, R.R. Zhang, et al., Facile synthesis of cobalt nanoparticles embedded in a rod-like porous carbon matrix with excellent electromagnetic wave absorption performance, Ceram. Int., 47(2021), No. 1, p. 643. doi: 10.1016/j.ceramint.2020.08.172
|
[25] |
Y. Wang, X.C. Di, Z. Lu, R.R. Cheng, X.M. Wu, and P.H. Gao, Controllable heterogeneous interfaces of cobalt/carbon nanosheets/rGO composite derived from metal–organic frameworks for high-efficiency microwave attenuation, Carbon, 187(2022), p. 404. doi: 10.1016/j.carbon.2021.11.027
|
[26] |
W. Liu, L. Liu, G.B. Ji, et al., Composition design and structural characterization of MOF-derived composites with controllable electromagnetic properties, ACS Sustainable Chem. Eng., 5(2017), No. 9, p. 7961. doi: 10.1021/acssuschemeng.7b01514
|
[27] |
J.N. Ma, W. Liu, X.H. Liang, et al., Nanoporous TiO2/C composites synthesized from directly pyrolysis of a Ti-based MOFs MIL-125(Ti) for efficient microwave absorption, J. Alloys Compd., 728(2017), p. 138. doi: 10.1016/j.jallcom.2017.08.274
|
[28] |
X. Zhang, J. Qiao, C. Liu, et al., A MOF-derived ZrO2/C nanocomposite for efficient electromagnetic wave absorption, Inorg. Chem. Front., 7(2020), No. 2, p. 385. doi: 10.1039/C9QI01259A
|
[29] |
L. Wu, M. Xue, S.L. Qiu, G. Chaplais, A. Simon-Masseron, and J. Patarin, Amino-modified MIL-68(In) with enhanced hydrogen and carbon dioxide sorption enthalpy, Microporous Mesoporous Mater., 157(2012), p. 75. doi: 10.1016/j.micromeso.2011.12.034
|
[30] |
L.N. Jin, X.Y. Qian, J.G. Wang, H. Aslan, and M.D. Dong, MIL-68 (In) nano-rods for the removal of Congo red dye from aqueous solution, J. Colloid Interface Sci., 453(2015), p. 270. doi: 10.1016/j.jcis.2015.05.005
|
[31] |
C. Yang, S.C. Wu, J.H. Cheng, and Y.C. Chen, Indium-based metal–organic framework/graphite oxide composite as an efficient adsorbent in the adsorption of rhodamine B from aqueous solution, J. Alloys Compd., 687(2016), p. 804. doi: 10.1016/j.jallcom.2016.06.173
|
[32] |
R.R. Xie, X.N. Guo, Z.H. Zhang, and D.X. Xue, An oxamide-functionalized ternary indium–organic framework, Inorg. Chem. Commun., 113(2020), art. No. 107762. doi: 10.1016/j.inoche.2020.107762
|
[33] |
V. Kumar Maka, P. Tamuly, S. Jindal, and J. Narasimha Moorthy, Control of In-MOF topologies and tuning of porosity through ligand structure, functionality and interpenetration: Selective cationic dye exchange, Appl. Mater. Today, 19(2020), art. No. 100613. doi: 10.1016/j.apmt.2020.100613
|
[34] |
P.H. Fathima Fasna and S. Sasi, A comprehensive overview on advanced sensing applications of functional metal organic frameworks (MOFs), ChemistrySelect, 6(2021), No. 25, p. 6365. doi: 10.1002/slct.202101533
|
[35] |
S.T. Meek, J.A. Greathouse, and M.D. Allendorf, Metal–organic frameworks: A rapidly growing class of versatile nanoporous materials, Adv. Mater., 23(2011), No. 2, p. 249. doi: 10.1002/adma.201002854
|
[36] |
T. Liu, R.J. Zhang, X.S. Zhang, K. Liu, Y.Y. Liu, and P.T. Yan, One-step room-temperature preparation of expanded graphite, Carbon, 119(2017), p. 544. doi: 10.1016/j.carbon.2017.04.076
|
[37] |
C. Volkringer, M. Meddouri, T. Loiseau, et al., The Kagomé topology of the gallium and indium metal–organic framework types with a MIL-68 structure: Synthesis, XRD, solid-state NMR characterizations, and hydrogen adsorption, Inorg. Chem., 47(2008), No. 24, p. 11892. doi: 10.1021/ic801624v
|
[38] |
J.W. Ma, H.Q. Fan, X.K. Zheng, et al., Facile metal–organic frameworks-templated fabrication of hollow indium oxide microstructures for chlorine detection at low temperature, J. Hazard. Mater., 387(2020), art. No. 122017. doi: 10.1016/j.jhazmat.2020.122017
|
[39] |
T. Maeda, S. Sugimoto, T. Kagotani, N. Tezuka, and K. Inomata, Effect of the soft/hard exchange interaction on natural resonance frequency and electromagnetic wave absorption of the rare earth-iron-boron compounds, J. Magn. Magn. Mater., 281(2004), No. 2-3, p. 195. doi: 10.1016/j.jmmm.2004.04.105
|
[40] |
Y.Z. Jiao, S.Y. Cheng, F. Wu, et al., MOF−Guest complex derived Cu/C nanocomposites with multiple heterogeneous interfaces for excellent electromagnetic waves absorption, Composites Part B, 211(2021), art. No. 108643. doi: 10.1016/j.compositesb.2021.108643
|
[41] |
J. Xiang, J.L. Li, X.H. Zhang, Q. Ye, J.H. Xu, and X.Q. Shen, Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers, J. Mater. Chem. A, 2(2014), No. 40, p. 16905. doi: 10.1039/C4TA03732D
|
[42] |
Z.H. Yang, H.L. Lv, and R.B. Wu, Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation, Nano Res., 9(2016), No. 12, p. 3671. doi: 10.1007/s12274-016-1238-z
|
[43] |
K.F. Wang, Y.J. Chen, R. Tian, et al., Porous Co–C core–shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance, ACS Appl. Mater. Interfaces, 10(2018), No. 13, p. 11333. doi: 10.1021/acsami.8b00965
|
[44] |
B. Wen, M.S. Cao, Z.L. Hou, et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites, Carbon, 65(2013), p. 124. doi: 10.1016/j.carbon.2013.07.110
|
[45] |
T.Y. Chen, S. Jiang, L.L. Li, et al., Vertically aligned MnO2 nanostructures on carbon fibers with tunable electromagnetic wave absorption performance, Appl. Surf. Sci., 589(2022), art. No. 152858. doi: 10.1016/j.apsusc.2022.152858
|
[46] |
R.L. Yang, B.C. Wang, J.Y. Xiang, et al., Fabrication of NiCo2-anchored graphene nanosheets by liquid-phase exfoliation for excellent microwave absorbers, ACS Appl. Mater. Interfaces, 9(2017), No. 14, p. 12673. doi: 10.1021/acsami.6b16144
|
[47] |
D. Lan, M. Qin, J.L. Liu, G.L. Wu, Y. Zhang, and H.J. Wu, Novel binary cobalt nickel oxide hollowed-out spheres for electromagnetic absorption applications, Chem. Eng. J., 382(2020), art. No. 122797. doi: 10.1016/j.cej.2019.122797
|
[48] |
Y. Ji, C.P. Mu, B.C. Wang, et al., Facile preparation of CoS2 nanoparticles embedded into polyaniline with tunable electromagnetic wave absorption performance, Mater. Chem. Phys., 246(2020), art. No. 122835. doi: 10.1016/j.matchemphys.2020.122835
|
[49] |
C. Zhang, C.P. Mu, J.Y. Xiang, et al., Microwave absorption characteristics of CH3NH3PbI3 perovskite/carbon nanotube composites, J. Mater. Sci., 52(2017), No. 22, p. 13023. doi: 10.1007/s10853-017-1426-6
|
[50] |
B.C. Wang, Y. Ji, C.P. Mu, et al., Well-controlled core–shell structures based on Fe3O4 nanospheres coated by polyaniline for highly efficient microwave absorption, Appl. Surf. Sci., 591(2022), art. No. 153176. doi: 10.1016/j.apsusc.2022.153176
|