留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
数据统计

分享

计量
  • 文章访问数:  84
  • HTML全文浏览量:  29
  • PDF下载量:  14
  • 被引次数: 0
Rao Zhang, Congpu Mu, Bochong Wang, Jianyong Xiang, Kun Zhai, Tianyu Xue, and Fusheng Wen, In/C hexagonal nanorods derived from In-MOF and graphene nanosheets composites with high-performance electromagnetic wave absorption, Int. J. Miner. Metall. Mater.,(2022). https://doi.org/10.1007/s12613-022-2520-6
Cite this article as:
Rao Zhang, Congpu Mu, Bochong Wang, Jianyong Xiang, Kun Zhai, Tianyu Xue, and Fusheng Wen, In/C hexagonal nanorods derived from In-MOF and graphene nanosheets composites with high-performance electromagnetic wave absorption, Int. J. Miner. Metall. Mater.,(2022). https://doi.org/10.1007/s12613-022-2520-6
引用本文 PDF XML SpringerLink
  • Research Article

    In/C hexagonal nanorods derived from In-MOF and graphene nanosheets composites with high-performance electromagnetic wave absorption

    + Author Affiliations
    • In recent years, electromagnetic (EM) wave absorption has been extensively investigated for solving EM radiation and pollution. The metal-organic frameworks (MOFs) have attached attention due to its low density and unique structure, which can meet the requirements of lightweight, strong reflection loss (RL) and wide absorption bandwidth of EM wave absorption materials. In this manuscript, indium metal nanoparticles/porous carbon (In/C) nanorods composites are prepared via the pyrolysis of nanorods-like In-MOFs at low temperature of 450 oC. Meatal indium nanoparticles are evenly attached and embedded on porous carbon. Low electrical conductivity of In/C nanorods is unfavorable to EM wave absorption performance, which is due to the low temperature carbonization. Thus, graphene nanosheets (Gr) with high electrical conductivity are introduced to adjust the EM parameters of In/C nanorods for enhancing EM wave absorption. The minimum RL of In/C-Gr-4 composites is up to -43.7 dB under a thin thickness of 1.30 mm. In addition, when thickness of In/C-Gr composites is further reduced to 1.14 mm, the minimum RL of -39.3 dB for EM wave of 16.1 GHz and effective absorption bandwidth of 3.7 GHz (from 14.3 to 18.0 GHz) are achieved at high frequency range, too. This work indicates that In/C-Gr composites as EM wave absorption materials have strong RL, thin thickness and lightweight.

    • loading

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

    • /

      返回文章
      返回