留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 11
Nov.  2022

图(5)

数据统计

分享

计量
  • 文章访问数:  1611
  • HTML全文浏览量:  428
  • PDF下载量:  92
  • 被引次数: 0
Zhaolin Li, Yaozong Yang, Jie Wang, Zhao Yang, and Hailei Zhao, Sandwich-like structure C/SiOx@graphene anode material with high electrochemical performance for lithium ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 1947-1953. https://doi.org/10.1007/s12613-022-2526-0
Cite this article as:
Zhaolin Li, Yaozong Yang, Jie Wang, Zhao Yang, and Hailei Zhao, Sandwich-like structure C/SiOx@graphene anode material with high electrochemical performance for lithium ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 1947-1953. https://doi.org/10.1007/s12613-022-2526-0
引用本文 PDF XML SpringerLink
研究论文

三明治结构高性能锂离子电池碳/氧化亚硅@石墨烯负极材料

    * 共同第一作者
  • 通讯作者:

    赵海雷    E-mail: hlzhao@ustb.edu.cn

文章亮点

  • (1) 采用了高效便捷的常温醇解法实现氧化亚硅颗粒在石墨烯片层上的均匀附着结构。
  • (2) 构建了围绕氧化亚硅的三维电子导电网络,提高材料的电极反应动力学过程。
  • (3) 三明治结构有效均化氧化亚硅局部电流和电极反应程度,提高材料的结构稳定性。
  • 氧化亚硅因其高理论比容量和丰富自然资源被认为是下一代高比能量锂离子电池负极材料之一。然而,氧化亚硅在充放电过程中由于较大体积变化引起电极结构不稳定,造成性能的衰减。本研究提出一种碳包覆层–氧化亚硅–石墨烯的三明治结构,有效提高氧化亚硅负极材料在充放电过程的结构稳定性。石墨烯和碳包覆层构建出一个围绕氧化亚硅颗粒的三维电子传输网络,不仅提高材料的电极反应动力学过程,而且能均化材料表面的局部电流和电极反应程度,实现材料体积的均匀变化。此外,存在于氧化亚硅和石墨烯之间的硅–氧–碳键可以增强颗粒在石墨烯片层上的附着强度,防止氧化亚硅在嵌脱锂过程中从石墨烯上脱落。得益于上述结构优势的协同作用,碳/氧化亚硅@石墨烯材料表现出优异的循环稳定性,在0.1 C倍率下循环100圈后比容量为890 mAh/g,容量保持率为73.7%。另外,材料经历前35圈电流密度从0.1 C到5 C的逐步上升的充放电循环后恢复到0.1 C的低电流后,仍表现出886 mAh/g的可逆比容量,对应容量恢复率93.7%,表明材料的倍率性能优异。该研究提供一种提高高容量型锂/钠离子电池负极材料结构稳定性的新策略。
  • Research Article

    Sandwich-like structure C/SiOx@graphene anode material with high electrochemical performance for lithium ion batteries

    + Author Affiliations
    • Silicon suboxide (SiOx, 0 < x < 2) is recognized as one of the next-generation anode materials for high-energy-density lithium ion batteries (LIBs) due to its high theoretical specific capacity and abundant resource. However, the severe mechanical instability arising from large volume variation upon charge/discharge cycles frustrates its electrochemical performance. Here we propose a well-designed sandwich-like structure with sandwiched SiOx nanoparticles between graphene sheets and amorphous carbon-coating layer so as to improve the structural stability of SiOx anode materials during cycling. Graphene sheets and carbon layer together construct a three-dimensional conductive network around SiOx particles, which not only improves the electrode reactions kinetics, but also homogenizes local current density and thus volume variation on SiOx surface. Moreover, Si–O–C bonds between SiOx and graphene endow the strong particle adhesion on graphene sheets, which prevents SiOx peeling from graphene sheets. Owing to the synergetic effects of the structural advantages, the C/SiOx@graphene material exhibits an excellent cyclic performance such as 890 mAh/g at 0.1 C rate and 73.7% capacity retention after 100 cycles. In addition, it also delivers superior rate capability with a capacity recovery of 886 mAh/g (93.7% recovery rate) after 35 cycles of ascending steps at current range of 0.1–5 C and finally back to 0.1 C. This study provides a novel strategy to improve the structural stability of high-capacity anode materials for lithium/sodium ion batteries.
    • loading
    • 1947-Supplementary Informations.docx
    • [1]
      H.Y. Li, H.D. Li, Z.W. Yang, et al., SiOx anode: From fundamental mechanism toward industrial application, Small, 17(2021), No. 51, art. No. 2102641. doi: 10.1002/smll.202102641
      [2]
      L. Sun, Y.X. Liu, J. Wu, et al., A review on recent advances for boosting initial Coulombic efficiency of silicon anodic lithium ion batteries, Small, 18(2022), No. 5, art. No. 2102894. doi: 10.1002/smll.202102894
      [3]
      T. Chen, J. Wu, Q.L. Zhang, and X. Su, Recent advancement of SiOx based anodes for lithium-ion batteries, J. Power Sources, 363(2017), p. 126. doi: 10.1016/j.jpowsour.2017.07.073
      [4]
      J.Y. Zhang, C.Q. Zhang, Z. Liu, et al., High-performance ball-milled SiOx anodes for lithium ion batteries, J. Power Sources, 339(2017), p. 86. doi: 10.1016/j.jpowsour.2016.11.044
      [5]
      J.G. Guo, W. Zhai, Q. Sun, et al., Facilely tunable core–shell Si@SiOx nanostructures prepared in aqueous solution for lithium ion battery anode, Electrochim. Acta, 342(2020), art. No. 136068. doi: 10.1016/j.electacta.2020.136068
      [6]
      J. Peng, J. Luo, W.W. Li, et al., Insight into the performance of the mesoporous structure SiOx nanoparticles anchored on carbon fibers as anode material of lithium-ion batteries, J. Electroanal. Chem., 880(2021), art. No. 114798. doi: 10.1016/j.jelechem.2020.114798
      [7]
      Q. Xu, J.K. Sun, Y.X. Yin, and Y.G. Guo, Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes, Adv. Funct. Mater., 28(2018), No. 8, art. No. 1705235. doi: 10.1002/adfm.201705235
      [8]
      Z.H. Liu, D.D. Guan, Q. Yu, et al., Monodisperse and homogeneous SiOx/C microspheres: A promising high-capacity and durable anode material for lithium-ion batteries, Energy Storage Mater., 13(2018), p. 112. doi: 10.1016/j.ensm.2018.01.004
      [9]
      W.L. Guo, X. Yan, F. Hou, et al., Flexible and free-standing SiOx/CNT composite films for high capacity and durable lithium ion batteries, Carbon, 152(2019), p. 888. doi: 10.1016/j.carbon.2019.06.088
      [10]
      M.R. Wu, M.Y. Gao, S.Y. Zhang, et al., High-performance lithium–sulfur battery based on porous N-rich g-C3N4 nanotubes via a self-template method, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1656. doi: 10.1007/s12613-021-2319-x
      [11]
      Y.R. Wang, L. Zhang, X.H. Gao, L.Y. Mao, Y. Hu, and X.W. Lou, One-pot magnetic field induced formation of Fe3O4/C composite microrods with enhanced lithium storage capability, Small, 10(2014), No. 14, p. 2815. doi: 10.1002/smll.201400239
      [12]
      D.L. Cheng, L.C. Yang, R.Z. Hu, et al., Sn–C and Se–C co-bonding SnSe/few-layered graphene micro–nano structure: Route to a densely compacted and durable anode for lithium/sodium-ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 40, p. 36685. doi: 10.1021/acsami.9b12204
      [13]
      G.Q. Wang, Z.S. Wen, Y.E. Yang, et al., Ultra-long life Si@rGO/g-C3N4 with a multiply synergetic effect as an anode material for lithium-ion batteries, J. Mater. Chem. A, 6(2018), No. 17, p. 7557. doi: 10.1039/C8TA00539G
      [14]
      V.D. Khavryuchenko, O.V. Khavryuchenko, and V.V. Lisnyak, Quantum chemical insight on vibration spectra of silica systems, Mol. Simul., 33(2007), No. 6, p. 531. doi: 10.1080/08927020701203730
      [15]
      Y.F. Chen, F.F. Lai, and J.L. Li, Effect of B2O3 on structure of glassy F-free CaO–SiO2–B2O3 systems by 29Si MAS NMR and Raman spectroscopy, JOM, 72(2020), No. 3, p. 1414. doi: 10.1007/s11837-020-04006-w
      [16]
      A. Prasath, A.S. Sharma, and P. Elumalai, Nanostructured SiO2@NiO heterostructure derived from laboratory glass waste as anode material for lithium-ion battery, Ionics, 25(2019), No. 3, p. 1015. doi: 10.1007/s11581-019-02879-9
      [17]
      Z.L. Li, H.L. Zhao, P.P. Lv, et al., Watermelon-like structured SiOx–TiO2@C nanocomposite as a high-performance lithium-ion battery anode, Adv. Funct. Mater., 28(2018), No. 31, art. No. 1605711. doi: 10.1002/adfm.201605711
      [18]
      F. Azimov, I. Markova, V. Stefanova, and K. Sharipov, Synthesis and characterization of SBA-15 and Ti-SBA-15 nanoporous materials for DME catalysts, J. Univ. Chem. Technol. Metall., 47(2012), No. 3, p. 333.
      [19]
      D.S. Wang, M.X. Gao, H.G. Pan, J.H. Wang, and Y.F. Liu, High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization, J. Power Sources, 256(2014), p. 190. doi: 10.1016/j.jpowsour.2013.12.128
      [20]
      F.F. Wang, S. Lin, X.S. Lu, R.Y. Hong, and H.Y. Liu, Poly-dopamine carbon-coated stable silicon/graphene/CNT composite as anode for lithium ion batteries, Electrochim. Acta, 404(2022), art. No. 139708. doi: 10.1016/j.electacta.2021.139708
      [21]
      Y.D. Cao, S. Hans, J. Liese, et al., Si(CO)y negative electrodes for Li-ion batteries, Chem. Mater., 33(2021), No. 18, p. 7386. doi: 10.1021/acs.chemmater.1c01989
      [22]
      M.Y. Gao, Z.H. Tang, M.R. Wu, et al., Self-supporting N, P doped Si/CNTs/CNFs composites with fiber network for high-performance lithium-ion batteries, J. Alloys Compd., 857(2021), art. No. 157554. doi: 10.1016/j.jallcom.2020.157554
      [23]
      B. Ramezanzadeh, A. Ahmadi, and M. Mahdavian, Enhancement of the corrosion protection performance and cathodic delamination resistance of epoxy coating through treatment of steel substrate by a novel nanometric sol–gel based silane composite film filled with functionalized graphene oxide nanosheets, Corros. Sci., 109(2016), p. 182. doi: 10.1016/j.corsci.2016.04.004
      [24]
      H.M. Xie, J.H. Dai, and D. Zhou, Tribological behaviors of graphene oxide partly substituted with nano-SiO2 as lubricant additives in water for magnesium alloy/steel interfaces, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1425. doi: 10.1007/s12613-022-2465-9
      [25]
      H. Zhao, Z.H. Wang, P. Lu, et al., Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design, Nano Lett., 14(2014), No. 11, p. 6704. doi: 10.1021/nl503490h
      [26]
      J. Zhao, Z.D. Lu, N. Liu, H.W. Lee, M.T. McDowell, and Y. Cui, Dry-air-stable lithium silicide–lithium oxide core–shell nanoparticles as high-capacity prelithiation reagents, Nat. Commun., 5(2014), No. 1, art. No. 5088. doi: 10.1038/ncomms6088
      [27]
      Z.Y. Cao, P.Y. Xu, H.W. Zhai, et al., Ambient-air stable lithiated anode for rechargeable Li-ion batteries with high energy density, Nano Lett., 16(2016), No. 11, p. 7235. doi: 10.1021/acs.nanolett.6b03655
      [28]
      M.T. Duan, M.R. Wu, K. Xue, et al., Preparation of CoO/SnO2@NC/S composite as high-stability cathode material for lithium–sulfur batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1647. doi: 10.1007/s12613-021-2315-1
      [29]
      L.J. Fu, H. Liu, H.P. Zhang, et al., Novel TiO2/C nanocomposites for anode materials of lithium ion batteries, J. Power Sources, 159(2006), No. 1, p. 219. doi: 10.1016/j.jpowsour.2006.04.081

    Catalog


    • /

      返回文章
      返回