留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 5
May  2023

图(10)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  954
  • HTML全文浏览量:  312
  • PDF下载量:  39
  • 被引次数: 0
Bowei Zhang, Hezu Wang, Yan Su, Wenguang Yang, Xuelong Hao, Zequn Zhang, Fengqin Wang, Wei Xue, and Junsheng Wu, Secondary phase precipitate-induced localized corrosion of pure aluminum anode for aluminum–air battery, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 977-987. https://doi.org/10.1007/s12613-022-2533-1
Cite this article as:
Bowei Zhang, Hezu Wang, Yan Su, Wenguang Yang, Xuelong Hao, Zequn Zhang, Fengqin Wang, Wei Xue, and Junsheng Wu, Secondary phase precipitate-induced localized corrosion of pure aluminum anode for aluminum–air battery, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 977-987. https://doi.org/10.1007/s12613-022-2533-1
引用本文 PDF XML SpringerLink
研究论文

二次相诱发铝空气电池纯铝阳极局部腐蚀研究

  • 通讯作者:

    张博威    E-mail: bwzhang@ustb.edu.cn

    吴俊升    E-mail: wujs@ustb.edu.cn

文章亮点

  • (1) 系统地研究了纯铝阳极中二次相及附近区域的原位局部腐蚀演化。
  • (2) 利用有限元模拟对二次相在腐蚀进程中的电流密度分布进行了探究。
  • (3) 建立了由二次相引发的纯铝在碱性介质中早期局部腐蚀机制。
  • 铝空气电池由于铝阳极储量丰富、环保经济、配置简单、能量密度高等优势在能源领域显示出巨大的应用潜力。然而铝阳极在碱性电解质中的严重腐蚀大大限制了铝空气电池的实际应用,且有关铝阳极中二次相对腐蚀行为影响的报道很少。本文选用4种不同纯度的纯铝,并采用微观结构表征、电化学测试、原位腐蚀形貌观察、有限元模拟等手段,系统的探究了中二次相对纯铝阳极在碱性介质中局部腐蚀的影响。结果表明:纯铝中存在分布在晶内的团簇相及沿晶界分布的线条状析出相两种二次相,纯铝中的Al–Fe二次相几乎不溶于碱性溶液且在腐蚀过程中充当阴极相,在电偶作用的影响下导致其周围基体发生腐蚀。低纯度铝样品由于晶粒内和晶界处的大量二次相引起的强烈电偶腐蚀而遭受严重的腐蚀。相比之下,高纯铝样品由于二次相尺寸较小且含量较低,腐蚀现象较为轻微。准原位SEM观察表明,铝基体的快速溶解进一步促进了二次相的暴露及脱落。此外,基于有限元模型的模拟电流密度分布表明,二次相加速了团簇相及周围基体的腐蚀速率。本文深入研究了二次相在碱性介质中对纯铝腐蚀的影响,为铝空气电池阳极材料的设计提供了参考。
  • Research Article

    Secondary phase precipitate-induced localized corrosion of pure aluminum anode for aluminum–air battery

    + Author Affiliations
    • Understanding the influence of purities on the electrochemical performance of pure aluminum (Al) in alkaline media for Al–air batteries is significant. Herein, we comprehensively investigate secondary phase precipitate (SPP)-induced localized corrosion of pure Al inNaOH solution mainly based on quasi-in-situ and cross-section observations under scanning electron microscopy coupled with finite element simulation. The experimental results indicate that Al–Fe SPPs appear as clusters and are coherent with the Al substrate. In alkaline media, Al–Fe SPPs exhibit more positive potentials than the substrate, thus aggravating localized galvanic corrosion as cathodic phases. Moreover, finite element simulation indicates that the irregular geometry coupled with potential difference produces the non-uniform current density distribution inside the SPP cluster, and the current density on the Al substrate gradually decreases with distance.
    • loading
    • [1]
      K. Huang, D.D. Peng, Z.X. Yao, et al., Cathodic plasma driven self-assembly of HEAs dendrites by pure single FCCFeCoNiMnCu nanoparticles as high efficient electrocatalysts for OER, Chem. Eng. J., 425(2021), art. No. 131533. doi: 10.1016/j.cej.2021.131533
      [2]
      S.M. Han, C.H. He, Q.B. Yun, et al., Pd-based intermetallic nanocrystals: From precise synthesis to electrocatalytic applications in fuel cells, Coord. Chem. Rev., 445(2021), art. No. 214085. doi: 10.1016/j.ccr.2021.214085
      [3]
      S. Zhang, Q. Fan, R. Xia, and T.J. Meyer, CO2 reduction: From homogeneous to heterogeneous electrocatalysis, Acc. Chem. Res., 53(2020), No. 1, p. 255. doi: 10.1021/acs.accounts.9b00496
      [4]
      X.D. Li, S.M. Wang, L. Li, Y.F. Sun, and Y. Xie, Progress and perspective for in situ studies of CO2 reduction, J. Am. Chem. Soc., 142(2020), No. 21, p. 9567.
      [5]
      H.B. Yang, L. Wu, B. Jiang, et al., Discharge properties of Mg–Sn–Y alloys as anodes for Mg–air batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1705. doi: 10.1007/s12613-021-2258-6
      [6]
      S.G. Wu, S.Y. Hu, Q. Zhang, et al., Hybrid high-concentration electrolyte significantly strengthens the practicability of alkaline aluminum–air battery, Energy Storage Mater., 31(2020), p. 310. doi: 10.1016/j.ensm.2020.06.024
      [7]
      S.G. Wu, Q. Zhang, D. Sun, et al., Understanding the synergisticeffect of alkyl polyglucoside and potassium stannate as advanced hybrid corrosion inhibitor for alkaline aluminum–air battery, Chem. Eng. J., 383(2020), art. No. 123162. doi: 10.1016/j.cej.2019.123162
      [8]
      Y.S. Liu, L.S. Yang, B. Xie, et al., Ultrathin Co3O4 nanosheet clusters anchored on nitrogen doped carbon nanotubes/3D graphene as binder-free cathodes for Al–air battery, Chem. Eng. J., 381(2020), art. No. 122681. doi: 10.1016/j.cej.2019.122681
      [9]
      S.J. Liu, X.H. Wan, Y. Sun, et al., Cobalt-based multicomponent nanoparticles supported on N-doped graphene as advanced cathodic catalyst for zinc–air batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2212. doi: 10.1007/s12613-022-2498-0
      [10]
      G.S. Peng, J. Huang, Y.C. Gu, and G.S. Song, Self-corrosion, electrochemical and discharge behavior of commercial purity Al anode via Mn modification in Al–air battery, Rare Met., 40(2021), No. 12, p. 3501. doi: 10.1007/s12598-020-01687-9
      [11]
      R. Mori, Recent developments for aluminum–air batteries, Electrochem. Energy Rev., 3(2020), No. 2, p. 344. doi: 10.1007/s41918-020-00065-4
      [12]
      R. Buckingham, T. Asset, and P. Atanassov, Aluminum–air batteries: A review of alloys, electrolytes and design, J. Power Sources, 498(2021), art. No. 229762. doi: 10.1016/j.jpowsour.2021.229762
      [13]
      Q.F. Li and N.J. Bjerrum, Aluminum as anode for energy storage and conversion: A review, J. Power Sources, 110(2002), No. 1, p. 1. doi: 10.1016/S0378-7753(01)01014-X
      [14]
      M.L. Doche, F. Novel-Cattin, R. Durand, and J.J. Rameau, Characterization of different grades of aluminum anodes for aluminum/air batteries, J. Power Sources, 65(1997), No. 1-2, p. 197. doi: 10.1016/S0378-7753(97)02473-7
      [15]
      M.L. Doche, J.J. Rameau, R. Durand, and F. Novel-Cattin, Electrochemical behaviour of aluminium in concentratedNaOH solutions, Corros. Sci., 41(1999), No. 4, p. 805. doi: 10.1016/S0010-938X(98)00107-3
      [16]
      Y.J. Cho, I.J. Park, H.J. Lee, and J.G. Kim, Aluminum anode for aluminum–air battery–Part I: Influence of aluminum purity, J. Power Sources, 277(2015), p. 370. doi: 10.1016/j.jpowsour.2014.12.026
      [17]
      Z.X. Yu, S.X. Hao, and Q.S. Fu, Electrochemical behaviors of different grades of pure aluminum in alkaline solution, Adv. Mater. Res., 652-654(2013), p. 853. doi: 10.4028/www.scientific.net/AMR.652-654.853
      [18]
      Y.R. Liu, Q.L. Pan, H. Li, Z.Q. Huang, J. Ye, and M.J. Li, Revealing the evolution of microstructure, mechanical property and corrosion behavior of 7A46 aluminum alloy with different ageing treatment, J. Alloys Compd., 792(2019), p. 32. doi: 10.1016/j.jallcom.2019.03.324
      [19]
      P. Xie, S.Y. Chen, K.H. Chen, et al., Enhancing the stress corrosion cracking resistance of a low-Cu containing Al–Zn–Mg–Cu aluminum alloy by step-quench and aging heat treatment, Corros. Sci., 161(2019), art. No. 108184. doi: 10.1016/j.corsci.2019.108184
      [20]
      S.Q. Liu, X. Wang, Y.R. Tao, X. Han, and C.X. Cui, Enhanced corrosion resistance of 5083 aluminum alloy by refining with nano-CeB6/Al inoculant, Appl. Surf. Sci., 484(2019), p. 403. doi: 10.1016/j.apsusc.2019.03.283
      [21]
      W.J. Liang, Q.L. Pan, Y.B. He, Y.C. Li, Y.C. Zhou, and C.G. Lu, Effect of aging on the mechanical properties and corrosion susceptibility of an Al–Cu–Li–Zr alloy containing Sc, Rare Met., 27(2008), No. 2, p. 146. doi: 10.1016/S1001-0521(08)60105-9
      [22]
      S.S. Singh, J.J. Williams, T.J. Stannard, X.H. Xiao, F.D. Carlo, and N. Chawla, Measurement of localized corrosion rates at inclusion particles in AA7075 by in situ three dimensional (3D) X-ray synchrotron tomography, Corros. Sci., 104(2016), p. 330. doi: 10.1016/j.corsci.2015.12.027
      [23]
      A. Chemin, D. Marques, L. Bisanha, A.D.J. Motheo, W.W. Bose Filho, and C.O.F. Ruchert, Influence of Al7Cu2Fe intermetallic particles on the localized corrosion of high strength aluminum alloys, Mater. Des., 53(2014), p. 118. doi: 10.1016/j.matdes.2013.07.003
      [24]
      A.C. Vieira, A.M. Pinto, L.A. Rocha, and S. Mischler, Effect of Al2Cu precipitates size and mass transport on the polarisation behaviour of age-hardened Al–Si–Cu–Mg alloys in 0.05 M NaCl, Electrochim. Acta, 56(2011), No. 11, p. 3821. doi: 10.1016/j.electacta.2011.02.044
      [25]
      H.W. Shi, Z.H. Tian, T.H. Hu, et al., Simulating corrosion of Al2CuMg phase by measuring ionic currents, chloride concentration and pH, Corros. Sci., 88(2014), p. 178. doi: 10.1016/j.corsci.2014.07.021
      [26]
      H.W. Shi, E.H. Han, F.C. Liu, T. Wei, Z.W. Zhu, and D.K. Xu, Study of corrosion inhibition of coupled Al2Cu–Al and Al3Fe–Al by cerium cinnamate using scanning vibrating electrode technique and scanning ion-selective electrode technique, Corros. Sci., 98(2015), p. 150. doi: 10.1016/j.corsci.2015.05.019
      [27]
      A. Kosari, F. Tichelaar, P. Visser, H. Zandbergen, H. Terryn, and J.M.C. Mol, Dealloying-driven local corrosion by intermetallic constituent particles and dispersoids in aerospace aluminium alloys, Corros. Sci., 177(2020), art. No. 108947. doi: 10.1016/j.corsci.2020.108947
      [28]
      S.S. Wang, I.W. Huang, L. Yang, et al., Effect of Cu content and aging conditions on pitting corrosion damage of 7xxx series aluminum alloys, J. Electrochem. Soc., 162(2015), No. 4, p. C150. doi: 10.1149/2.0301504jes
      [29]
      Y.K. Zhu, K. Sun, and G.S. Frankel, Intermetallic phases in aluminum alloys and their roles in localized corrosion, J. Electrochem. Soc., 165(2018), No. 11, p. C807. doi: 10.1149/2.0931811jes
      [30]
      G.S. Peng, J. Huang, Y.C. Gu, and G.S. Song, The discharge and corrosion behavior of Al anodes with different purity in alkaline solution, Int. J. Electrochem. Sci., 15(2020), p. 6892. doi: 10.20964/2020.07.59
      [31]
      K. Törne, A. Örnberg, and J. Weissenrieder, Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments, Acta Biomater., 48(2017), p. 541. doi: 10.1016/j.actbio.2016.10.030
      [32]
      R. Ly, K.T. Hartwig, and H. Castaneda, Effects of strain localization on the corrosion behavior of ultra-fine grained aluminum alloy AA6061, Corros. Sci., 139(2018), p. 47. doi: 10.1016/j.corsci.2018.04.023
      [33]
      C. Örnek and D.L. Engelberg, SKPFM measured Volta potential correlated with strain localisation in microstructure to understand corrosion susceptibility of cold-rolled grade 2205 duplex stainless steel, Corros. Sci., 99(2015), p. 164. doi: 10.1016/j.corsci.2015.06.035
      [34]
      S.K. Kairy, P.A. Rometsch, C.H.J. Davies, and N. Birbilis, On the electrochemical and quasi in situ corrosion response of the Q-phase (AlxCuyMgzSiw) intermetallic particle in 6xxx series aluminum alloys, Corrosion, 73(2017), No. 1, p. 87. doi: 10.5006/2249
      [35]
      J.S. Wu, D.D. Peng, Y.T. He, et al., In situ formation of decavanadate-intercalated layered double hydroxide films on AA2024 and their anti-corrosive properties when combined with hybrid sol gel films, Materials (Basel), 10(2017), No. 4, art. No. 426. doi: 10.3390/ma10040426
      [36]
      X.Q. Li, L.W. Wang, L. Fan, Z.Y. Cui, and M.X. Sun, Effect of temperature and dissolved oxygen on the passivation behavior of Ti–6Al–3Nb–2Zr–1Mo alloy in artificial seawater, J. Mater. Res. Technol., 17(2022), p. 374. doi: 10.1016/j.jmrt.2022.01.018
      [37]
      Z.P. Wang, Y. Wang, B.W. Zhang, et al., Passivation behavior of 316L stainless steel in artificial seawater: Effects of pH and dissolved oxygen, Anti-Corros. Methods Mater., 68(2021), No. 2, p. 122. doi: 10.1108/ACMM-09-2020-2367
      [38]
      M.T. Wang, L.W. Wang, K. Zhao, Y.X. Liu, and Z.Y. Cui, Understanding the passivation behavior and film chemistry of four corrosion-resistant alloys in the simulated flue gas condensates, Mater. Today Commun., 31(2022), art. No. 103567. doi: 10.1016/j.mtcomm.2022.103567

    Catalog


    • /

      返回文章
      返回