Cite this article as: |
Xianglong Chen, Yudong Gong, Xiu Li, Feng Zhan, Xinhua Liu, and Jianmin Ma, Perspective on low-temperature electrolytes for LiFePO4-based lithium-ion batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 1-13. https://doi.org/10.1007/s12613-022-2541-1 |
李秀 E-mail: x.li@uestc.edu.cn
詹锋 E-mail: fzhan_gxu@126.com
刘新华 E-mail: liuxinhua19@buaa.edu.cn
[1] |
P. Cai, K.Y. Zou, X.L. Deng, B.W. Wang, M. Zheng, L.H. Li, H.S. Hou, G.Q. Zou, and X.B. Ji, Comprehensive understanding of sodium-ion capacitors: Definition, mechanisms, configurations, materials, key technologies, and future developments, Adv. Energy Mater., 11(2021), No. 16, art. No. 2003804. doi: 10.1002/aenm.202003804
|
[2] |
F. Li, J.D. Liu, J. He, Y.Y. Hou, H.P. Wang, D.X. Wu, J.D. Huang, and J.M. Ma, Additive-assisted hydrophobic Li+-solvated structure for stabilizing dual electrode electrolyte interphases through suppressing LiPF6 hydrolysis, Angew. Chem. Int. Ed., 61(2022), No. 27, art. No. e202205091.
|
[3] |
L. Yang, W.T. Deng, W. Xu, Y. Tian, A.N. Wang, B.W. Wang, G.Q. Zou, H.S. Hou, W.N. Deng, and X.B. Ji, Olivine LiMnxFe1–xPO4 cathode materials for lithium ion batteries: Restricted factors of rate performances, J. Mater. Chem. A, 9(2021), No. 25, p. 14214. doi: 10.1039/D1TA01526E
|
[4] |
C. Yang, J.L. Zhang, Q.K. Jing, Y.B. Liu, Y.Q. Chen, and C.Y. Wang, Recovery and regeneration of LiFePO4 from spent lithium-ion batteries via a novel pretreatment process, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1478. doi: 10.1007/s12613-020-2137-6
|
[5] |
G.L. Zhu, K.C. Wen, W.Q. Lv, X.Z. Zhou, Y.C. Liang, F. Yang, Z.L. Chen, M.D. Zou, J.C. Li, Y.Q. Zhang, and W.D. He, Materials insights into low-temperature performances of lithium-ion batteries, J. Power Sources, 300(2015), p. 29. doi: 10.1016/j.jpowsour.2015.09.056
|
[6] |
C.C. Zhou, Z. Su, X.L. Gao, R. Cao, S.C. Yang, and X.H. Liu, Ultra-high-energy lithium-ion batteries enabled by aligned structured thick electrode design, Rare Met., 41(2022), No. 1, p. 14. doi: 10.1007/s12598-021-01785-2
|
[7] |
S.C. Yang, R. He, Z.J. Zhang, Y.G. Cao, X.L. Gao, and X.H. Liu, Chain: Cyber hierarchy and interactional network enabling digital solution for battery full-lifespan management, Matter, 3(2020), No. 1, p. 27. doi: 10.1016/j.matt.2020.04.015
|
[8] |
B.B. Wei, Y.B. Wu, F.Y. Yu, and Y.N. Zhou, Preparation and electrochemical properties of carbon-coated LiFePO4 hollow nanofibers, Int. J. Miner. Metall. Mater., 23(2016), No. 4, p. 474. doi: 10.1007/s12613-016-1258-4
|
[9] |
Y.H. Wang, R. Mei, and X.M. Yang, Enhanced electrochemical properties of LiFePO4/C synthesized with two kinds of carbon sources, PEG-4000 (organic) and Super p (inorganic), Ceram. Int., 40(2014), No. 6, p. 8439. doi: 10.1016/j.ceramint.2014.01.054
|
[10] |
C.M. Burba and R. Frech, Local structure in the Li-ion battery cathode material Lix(MnyFe1−y)PO4 for 0<x≤1 and y = 0.0, 0.5, and 1.0, J. Power Sources, 172(2007), No. 2, p. 870. doi: 10.1016/j.jpowsour.2007.05.075
|
[11] |
S.Q. Zhu, Improving methods for better performance of commercial LiFePO4/C batteries, Int. J. Electrochem. Sci., 16(2021), art. No. 210564.
|
[12] |
B.F. Zhang, Y.L. Xu, J. Wang, X.N. Ma, W.Q. Hou, and X. Xue, Electrochemical performance of LiFePO4/graphene composites at low temperature affected by preparation technology, Electrochim. Acta, 368(2021), art. No. 137575. doi: 10.1016/j.electacta.2020.137575
|
[13] |
Y.J. Lv, B. Huang, J.X. Tan, S.Q. Jiang, S.F. Zhang, and Y.X. Wen, Enhanced low temperature electrochemical performances of LiFePO4/C by V3+ and F− co-doping, Mater. Lett., 229(2018), p. 349. doi: 10.1016/j.matlet.2018.07.049
|
[14] |
D. Xie, G.L. Cai, Z.C. Liu, R.S. Guo, D.D. Sun, C. Zhang, Y.Z. Wan, J.H. Peng, and H. Jiang, The low temperature electrochemical performances of LiFePO4/C/graphene nanofiber with 3D-bridge network structure, Electrochim. Acta, 217(2016), p. 62. doi: 10.1016/j.electacta.2016.09.058
|
[15] |
X.X. Gu, S. Qiao, X.L. Ren, X.Y. Liu, Y.Z. He, X.T. Liu, and T.F. Liu, Multi-core–shell-structured LiFePO4@Na3V2(PO4)3@C composite for enhanced low-temperature performance of lithium-ion batteries, Rare Met., 40(2021), No. 4, p. 828. doi: 10.1007/s12598-020-01669-x
|
[16] |
J.Y. Liu, X.R. Lin, T.L. Han, X.X. Li, C.P. Gu, and J.J. Li, A novel litchi-like LiFePO4 sphere/reduced graphene oxide composite Li-ion battery cathode with high capacity, good rate-performance and low-temperature property, Appl. Surf. Sci., 459(2018), p. 233. doi: 10.1016/j.apsusc.2018.07.199
|
[17] |
B. Yao, Z.J. Ding, J.X. Zhang, X.Y. Feng, and L.W. Yin, Encapsulation of LiFePO4 by in-situ graphitized carbon cage towards enhanced low temperature performance as cathode materials for lithium ion batteries, J. Solid State Chem., 216(2014), p. 9. doi: 10.1016/j.jssc.2014.04.023
|
[18] |
X. Kang, Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev., 114(2014), No. 23, p. 11503. doi: 10.1021/cr500003w
|
[19] |
X.L. Gao, X.H. Liu, W.L. Xie, L.S. Zhang, and S.C. Yang, Multiscale observation of Li plating for lithium-ion batteries, Rare Met., 40(2021), No. 11, p. 3038. doi: 10.1007/s12598-021-01730-3
|
[20] |
X.Z. Liao, Z.F. Ma, Q. Gong, Y.S. He, L. Pei, and L.J. Zeng, Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte, Electrochem. Commun., 10(2008), No. 5, p. 691. doi: 10.1016/j.elecom.2008.02.017
|
[21] |
M.Y. Yan, G.B. Zhang, Q.L. Wei, X.C. Tian, K.N. Zhao, Q.Y. An, L. Zhou, Y.L. Zhao, C.J. Niu, W.H. Ren, L. He, and L.Q. Mai, In operando observation of temperature-dependent phase evolution in lithium-incorporation olivine cathode, Nano Energy, 22(2016), p. 406. doi: 10.1016/j.nanoen.2016.01.031
|
[22] |
M. Petzl, M. Kasper, and M.A. Danzer, Lithium plating in a commercial lithium-ion battery: A low-temperature aging study, J. Power Sources, 275(2015), p. 799. doi: 10.1016/j.jpowsour.2014.11.065
|
[23] |
M.G. Ouyang, Z.Y. Chu, L.G. Lu, J.Q. Li, X.B. Han, X.N. Feng, and G.M. Liu, Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles, J. Power Sources, 286(2015), p. 309. doi: 10.1016/j.jpowsour.2015.03.178
|
[24] |
Z.H. Sun, Z. Li, L.F. Gao, X. Zhao, D.X. Han, S.Y. Gan, S.J. Guo, and L. Niu, Grafting benzenediazonium tetrafluoroborate onto LiNixCoyMnzO2 materials achieves subzero-temperature high-capacity lithium-ion storage via a diazonium soft-chemistry method, Adv. Energy Mater., 9(2019), No. 6, art. No. 1802946. doi: 10.1002/aenm.201802946
|
[25] |
P. He, X. Zhang, Y.G. Wang, L. Cheng, and Y.Y. Xia, Lithium-ion intercalation behavior of LiFePO4 in aqueous and nonaqueous electrolyte solutions, J. Electrochem. Soc., 155(2008), No. 2, art. No. A144. doi: 10.1149/1.2815609
|
[26] |
D.Y.W. Yu, C. Fietzek, W. Weydanz, K. Donoue, T. Inoue, H. Kurokawa, and S. Fujitani, Study of LiFePO4 by cyclic voltammetry, J. Electrochem. Soc., 154(2007), No. 4, p. A253. doi: 10.1149/1.2434687
|
[27] |
Z. Yang, Q. Huang, S.J. Li, and J. Mao, High-temperature effect on electrochemical performance of Li4Ti5O12 based anode material for Li-ion batteries, J. Alloys Compd., 753(2018), p. 192. doi: 10.1016/j.jallcom.2018.04.105
|
[28] |
M. Gaberscek, R. Dominko, and J. Jamnik, Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes Electrochem. Commun., 9(2007), No. 12, p. 2778. doi: 10.1016/j.elecom.2007.09.020
|
[29] |
S.S. Zhang, K. Xu, and T.R. Jow, EIS study on the formation of solid electrolyte interface in Li-ion battery, Electrochim. Acta, 51(2006), No. 8-9, p. 1636. doi: 10.1016/j.electacta.2005.02.137
|
[30] |
S.S. Zhang, Electrochemical study of the formation of a solid electrolyte interface on graphite in a LiBC2O4F2-based electrolyte, J. Power Sources, 163(2007), No. 2, p. 713. doi: 10.1016/j.jpowsour.2006.09.040
|
[31] |
B.V. Ratnakumar, M.C. Smart, and S. Surampudi, Effects of SEI on the kinetics of lithium intercalation, J. Power Sources, 97-98(2001), p. 137. doi: 10.1016/S0378-7753(01)00682-6
|
[32] |
B.K. Mandal, A.K. Padhi, Z. Shi, S. Chakraborty, and R. Filler, New low temperature electrolytes with thermal runaway inhibition for lithium-ion rechargeable batteries, J. Power Sources, 162(2006), No. 1, p. 690. doi: 10.1016/j.jpowsour.2006.06.053
|
[33] |
L. Zhou and B.L. Lucht, Performance of lithium tetrafluorooxalatophosphate (LiFOP) electrolyte with propylene carbonate (PC), J. Power Sources, 205(2012), p. 439. doi: 10.1016/j.jpowsour.2012.01.067
|
[34] |
G.X. Wang, H.C. Kang, M. Chen, K.P. Yan, X.S. Hu, and E.J. Cairns, Effects of solvents on the electrochemical performance of LiFePO4/C composite electrodes, ChemElectroChem, 4(2017), No. 2, p. 376. doi: 10.1002/celc.201600525
|
[35] |
K. Zaghib, M. Dontigny, P. Perret, A. Guerfi, M. Ramanathan, J. Prakash, A. Mauger, and C.M. Julien, Electrochemical and thermal characterization of lithium titanate spinel anode in C-LiFePO4//C-Li4Ti5O12 cells at sub-zero temperatures, J. Power Sources, 248(2014), p. 1050. doi: 10.1016/j.jpowsour.2013.09.083
|
[36] |
G.J. Xu, Z.H. Liu, C.J. Zhang, G.L. Cui, and L.Q. Chen, Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures, J. Mater. Chem. A, 3(2015), No. 8, p. 4092. doi: 10.1039/C4TA06264G
|
[37] |
J.G. Han, K. Kim, Y. Lee, and N.S. Choi, Scavenging materials: Scavenging materials to stabilize LiPF6-containing carbonate-based electrolytes for Li-ion batteries, Adv. Mater., 31(2019), No. 20, art. No. 1970148. doi: 10.1002/adma.201970148
|
[38] |
L.F. Li, S.S. Zhou, H.B. Han, H. Li, J. Nie, M. Armand, Z.B. Zhou, and X.J. Huang, Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents, J. Electrochem. Soc., 158(2011), No. 2, art. No. A74. doi: 10.1149/1.3514705
|
[39] |
J. Li, C.F. Yuan, Z.H. Guo, Z.A. Zhang, Y.Q. Lai, and J. Liu, Limiting factors for low-temperature performance of electrolytes in LiFePO4/Li and graphite/Li half cells, Electrochim. Acta, 59(2012), p. 69. doi: 10.1016/j.electacta.2011.10.041
|
[40] |
S.S. Zhang, K. Xu, and T.R. Jow, A new approach toward improved low temperature performance of Li-ion battery, Electrochem. Commun., 4(2002), No. 11, p. 928. doi: 10.1016/S1388-2481(02)00490-3
|
[41] |
K. Xu, S.S. Zhang, U. Lee, J.L. Allen, and T.R. Jow, LiBOB: Is it an alternative salt for lithium ion chemistry, J. Power Sources, 146(2005), No. 1-2, p. 79. doi: 10.1016/j.jpowsour.2005.03.153
|
[42] |
S.S. Zhang, K. Xu, and T.R. Jow, An improved electrolyte for the LiFePO4 cathode working in a wide temperature range, J. Power Sources, 159(2006), No. 1, p. 702. doi: 10.1016/j.jpowsour.2005.11.042
|
[43] |
H.M. Zhou, F.R. Liu, and J. Li, Preparation, thermal stability and electrochemical properties of LiODFB, J. Mater. Sci. Technol., 28(2012), No. 8, p. 723. doi: 10.1016/S1005-0302(12)60121-2
|
[44] |
S.Y. Li, W. Zhao, X.L. Cui, Y.Y. Zhao, B.C. Li, H.M. Zhang, Y.L. Li, G.X. Li, X.S. Ye, and Y.C. Luo, An improved method for synthesis of lithium difluoro(oxalato)borate and effects of sulfolane on the electrochemical performances of lithium-ion batteries, Electrochim. Acta, 91(2013), p. 282. doi: 10.1016/j.electacta.2013.01.011
|
[45] |
S.Y. Li, W. Zhao, Z.F. Zhou, X.L. Cui, Z.C. Shang, H.N. Liu, and D.Q. Zhang, Studies on electrochemical performances of novel electrolytes for wide-temperature-range lithium-ion batteries, ACS Appl. Mater. Interfaces, 6(2014), No. 7, p. 4920. doi: 10.1021/am405973x
|
[46] |
S.Y. Li, X.P. Li, J.L. Liu, Z.C. Shang, and X.L. Cui, A low-temperature electrolyte for lithium-ion batteries, Ionics, 21(2015), No. 4, p. 901. doi: 10.1007/s11581-014-1275-0
|
[47] |
L.J. Zhang, Y.X. Sun, Y. Zhou, C.X. Hai, S.Q. Hu, J.B. Zeng, Y. Shen, S.D. Dong, G.C. Qi, and F.Q. Li, Investigation of the synergetic effects of LiBF4 and LiODFB as wide-temperature electrolyte salts in lithium-ion batteries, Ionics, 24(2018), No. 10, p. 2995. doi: 10.1007/s11581-018-2470-1
|
[48] |
G. Xu, X. Shangguan, S. Dong, X. Zhou, and G. Cui, Formulation of blended-lithium-salt electrolytes for lithium batteries, Angew. Chem. Int. Ed., 59(2020), No. 9, p. 3400. doi: 10.1002/anie.201906494
|
[49] |
F.Q. Li, Y. Gong, G.F. Jia, Q.L. Wang, Z.J. Peng, W. Fan, and B. Bai, A novel dual-salts of LiTFSI and LiODFB in LiFePO4-based batteries for suppressing aluminum corrosion and improving cycling stability, J. Power Sources, 295(2015), p. 47. doi: 10.1016/j.jpowsour.2015.06.117
|
[50] |
D. Luo, M. Li, Y. Zheng, Q.Y. Ma, R. Gao, Z. Zhang, H.Z. Dou, G.B. Wen, L.L. Shui, A.P. Yu, X. Wang, and Z.W. Chen, Electrolyte design for lithium metal anode-based batteries toward extreme temperature application, Adv. Sci., 8(2021), No. 18, art. No. e2101051. doi: 10.1002/advs.202101051
|
[51] |
L.X. Liao, X.Q. Cheng, Y.L. Ma, P.J. Zuo, W. Fang, G.P. Yin, and Y.Z. Gao, Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode, Electrochim. Acta, 87(2013), p. 466. doi: 10.1016/j.electacta.2012.09.083
|
[52] |
B.R. Wu, Y.H. Ren, D.B. Mu, X.J. Liu, J.C. Zhao, and F. Wu, Enhanced electrochemical performance of LiFePO4 cathode with the addition of fluoroethylene carbonate in electrolyte, J. Solid State Electrochem., 17(2013), No. 3, p. 811. doi: 10.1007/s10008-012-1927-9
|
[53] |
L.X. Liao, T. Fang, X.G. Zhou, Y.Z. Gao, X.Q. Cheng, L.L. Zhang, and G.P. Yin, Enhancement of low-temperature performance of LiFePO4 electrode by butyl sultone as electrolyte additive, Solid State Ionics, 254(2014), p. 27. doi: 10.1016/j.ssi.2013.10.047
|
[54] |
B.R. Wu, Y.H. Ren, D.B. Mu, X.J. Liu, G.C. Yang, and Z. Sun, Lithium insertion/desertion properties of LiFePO4 cathode in a low temperature electrolyte modified with sodium chloride additive, Solid State Ionics, 260(2014), p. 8. doi: 10.1016/j.ssi.2014.03.006
|
[55] |
X.Y. Zhao, J.L. Wang, X.D. Yan, and L.Z. Zhang, Effect of nitrile group functionalized organosilicon as electrolyte additive on low-temperature performance of LiFePO4 battery, Chem. J. Chin. Univ., 40(2019), No. 6, p. 1258.
|
[56] |
H.B. Rong, M.Q. Xu, L.D. Xing, and W.S. Li, Enhanced cyclability of LiNi0.5Mn1.5O4 cathode in carbonate-based electrolyte with incorporation of tris(trimethylsilyl)phosphate (TMSP), J. Power Sources, 261(2014), p. 148. doi: 10.1016/j.jpowsour.2014.03.032
|
[57] |
B.R. Wu, Y.H. Ren, D.B. Mu, C. Zhang, X. Liu, and F. Wu, Enhanced low temperature performance of LiFePO4 cathode with electrolyte modification, Int. J. Electrochem. Sci., 8(2013), p. 8502.
|
[58] |
A.M. Haregewoin, A.S. Wotango, and B.J. Hwang, Electrolyte additives for lithium ion battery electrodes: Progress and perspectives, Energy Environ. Sci., 9(2016), No. 6, p. 1955. doi: 10.1039/C6EE00123H
|
[59] |
A. Tron, S. Jeong, Y.D. Park, and J. Mun, Aqueous lithium-ion battery of nano-LiFePO4 with antifreezing agent of ethyleneglycol for low-temperature operation, ACS Sustain. Chem. Eng., 7(2019), No. 17, p. 14531. doi: 10.1021/acssuschemeng.9b02042
|
[60] |
A.C. Thenuwara, P.P. Shetty, N. Kondekar, S.E. Sandoval, K. Cavallaro, R. May, C.T. Yang, L.E. Marbella, Y. Qi, and M.T. McDowell, Efficient low-temperature cycling of lithium metal anodes by tailoring the solid-electrolyte interphase, ACS Energy Lett., 5(2020), No. 7, p. 2411. doi: 10.1021/acsenergylett.0c01209
|
[61] |
T.T. Gao, B. Wang, L. Wang, G.J. Liu, F. Wang, H. Luo, and D.L. Wang, LiAlCl4·3SO2 as a high conductive, non-flammable and inorganic non-aqueous liquid electrolyte for lithium ion batteries, Electrochim. Acta, 286(2018), p. 77. doi: 10.1016/j.electacta.2018.08.033
|
[62] |
Y.S. Ye, J. Rick, and B.J. Hwang, Ionic liquid polymer electrolytes, J. Mater. Chem. A, 1(2013), No. 8, p. 2719. doi: 10.1039/C2TA00126H
|
[63] |
N. Böckenfeld, M. Willeke, J. Pires, M. Anouti, and A. Balducci, On the use of lithium iron phosphate in combination with protic ionic liquid-based electrolytes, J. Electrochem. Soc., 160(2013), No. 4, p. A559. doi: 10.1149/2.027304jes
|
[64] |
J.S. Moreno, Y. Deguchi, S. Panero, B. Scrosati, H. Ohno, E. Simonetti, and G.B, Appetecchi, N-Alkyl-N-ethylpyrrolidinium cation-based ionic liquid electrolytes for safer lithium battery systems, Electrochim. Acta, 191(2016), p. 624. doi: 10.1016/j.electacta.2016.01.119
|
[65] |
Q. Zhao, X. Liu, S. Stalin, K. Khan, and L.A. Archer, Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries, Nat. Energy, 4(2019), No. 5, p. 365. doi: 10.1038/s41560-019-0349-7
|
[66] |
A. Patil, V. Patil, D.W. Shin, J.W. Choi, D.S. Paik, and S.J. Yoon, Issue and challenges facing rechargeable thin film lithium batteries, Mater. Res. Bull., 43(2008), No. 8-9, p. 1913. doi: 10.1016/j.materresbull.2007.08.031
|
[67] |
J.Y. Song, Y.Y. Wang, and C.C. Wan, Review of gel-type polymer electrolytes for lithium-ion batteries, J. Power Sources, 77(1999), No. 2, p. 183. doi: 10.1016/S0378-7753(98)00193-1
|
[68] |
D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, and G.X. Wang, Polymer electrolytes for lithium-based batteries: Advances and prospects, Chem, 5(2019), No. 9, p. 2326. doi: 10.1016/j.chempr.2019.05.009
|
[69] |
J. Mindemark, M.J. Lacey, T. Bowden, and D. Brandell, Beyond PEO−alternative host materials for Li+-conducting solid polymer electrolytes, Prog. Polym. Sci., 81(2018), p. 114. doi: 10.1016/j.progpolymsci.2017.12.004
|
[70] |
Z.J. Sun, Y.H. Li, S.Y. Zhang, L. Shi, H. Wu, H.T. Bu, and S.J. Ding, g-C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability, J. Mater. Chem. A, 7(2019), No. 18, p. 11069. doi: 10.1039/C9TA00634F
|
[71] |
Z.G. Xue, D. He, and X.L. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, J. Mater. Chem. A, 3(2015), No. 38, p. 19218. doi: 10.1039/C5TA03471J
|
[72] |
H. Duan, Y.X. Yin, X.X. Zeng, J.Y. Li, J.L. Shi, Y. Shi, R. Wen, Y.G. Guo, and L.J. Wan, In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries, Energy Storage Mater., 10(2018), p. 85. doi: 10.1016/j.ensm.2017.06.017
|
[73] |
S.J. Xu, Z.H. Sun, C.G. Sun, F. Li, K. Chen, Z.H. Zhang, G.J. Hou, H.M. Cheng, and F. Li, Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature, Adv. Funct. Mater., 30(2020), No. 51, art. No. 2007172. doi: 10.1002/adfm.202007172
|
[74] |
J. Yu, J.P. Liu, X.D. Lin, H.M. Law, G.D. Zhou, S.C.T. Kwok, M.J. Robson, J.X. Wu, and F. Ciucci, A solid-like dual-salt polymer electrolyte for Li-metal batteries capable of stable operation over an extended temperature range, Energy Storage Mater., 37(2021), p. 609. doi: 10.1016/j.ensm.2021.02.045
|
[75] |
J.Q. Zhou, H.Q. Ji, Y.J. Qian, J. Liu, T.Y. Yan, C.L. Yan, and T. Qian, Molecular simulations guided polymer electrolyte towards superior low-temperature solid lithium-metal batteries, ACS Appl. Mater. Interfaces, 13(2021), No. 41, p. 48810. doi: 10.1021/acsami.1c14825
|
[76] |
Z.H. Lin and J. Liu, Low-temperature all-solid-state lithium-ion batteries based on a di-cross-linked starch solid electrolyte, RSC Adv., 9(2019), No. 59, p. 34601. doi: 10.1039/C9RA07781B
|
[77] |
Z.Y. Lin, X.W. Guo, and H.J. Yu, Amorphous modified silyl-terminated 3D polymer electrolyte for high-performance lithium metal battery, Nano Energy, 41(2017), p. 646. doi: 10.1016/j.nanoen.2017.10.021
|
[78] |
Z.Y. Lin, X.W. Guo, Z.C. Wang, B.Y. Wang, S.M. He, L.A. O'Dell, J. Huang, H. Li, H.J. Yu, and L.Q. Chen, A wide-temperature superior ionic conductive polymer electrolyte for lithium metal battery, Nano Energy, 73(2020), art. No. 104786. doi: 10.1016/j.nanoen.2020.104786
|
[79] |
L.F. Hu, Z.L. Tang, and Z.T. Zhang, New composite polymer electrolyte comprising mesoporous lithium aluminate nanosheets and PEO/LiClO4, J. Power Sources, 166(2007), No. 1, p. 226. doi: 10.1016/j.jpowsour.2007.01.028
|
[80] |
K. Hanai, T. Maruyama, N. Imanishi, et al., Enhancement of electrochemical performance of lithium dry polymer battery with LiFePO4/carbon composite cathode, J. Power Sources, 178(2008), No. 2, p. 789. doi: 10.1016/j.jpowsour.2007.10.004
|
[81] |
Y. Liu, J.Y. Lee, and L. Hong, In situ preparation of poly(ethylene oxide)-SiO2 composite polymer electrolytes, J. Power Sources, 129(2004), No. 2, p. 303. doi: 10.1016/j.jpowsour.2003.11.026
|
[82] |
H.M.J.C. Pitawala, M.A.K.L. Dissanayake, and V.A. Seneviratne, Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)9LiTf, Solid State Ionics, 178(2007), No. 13-14, p. 885. doi: 10.1016/j.ssi.2007.04.008
|
[83] |
H.Y. Guan, F. Lian, Y. Ren, Y. Wen, X.R. Pan, and J.L. Sun, Comparative study of different membranes as separators for rechargeable lithium-ion batteries, Int. J. Miner. Metall. Mater., 20(2013), No. 6, p. 598. doi: 10.1007/s12613-013-0772-x
|
[84] |
F. Lv, K.X. Liu, Z.Y. Wang, J.F. Zhu, Y. Zhao, and S. Yuan, Ultraviolet-cured polyethylene oxide-based composite electrolyte enabling stable cycling of lithium battery at low temperature, J. Colloid Interface Sci., 596(2021), p. 257. doi: 10.1016/j.jcis.2021.02.095
|
[85] |
W.L. Cai, Y.X. Yao, G.L. Zhu, C. Yan, L.L. Jiang, C.X. He, J.Q. Huang, and Q. Zhang, A review on energy chemistry of fast-charging anodes, Chem. Soc. Rev., 49(2020), No. 12, p. 3806. doi: 10.1039/C9CS00728H
|
[86] |
G.A. Collins, H. Geaney, and K.M. Ryan, Alternative anodes for low temperature lithium-ion batteries, J. Mater. Chem. A, 9(2021), No. 25, p. 14172. doi: 10.1039/D1TA00998B
|
[87] |
A. Friesen, S. Hildebrand, F. Horsthemke, M. Börner, R. Klöpsch, P. Niehoff, F.M. Schappacher, and M. Winter, Al2O3 coating on anode surface in lithium ion batteries: Impact on low temperature cycling and safety behavior, J. Power Sources, 363(2017), p. 70. doi: 10.1016/j.jpowsour.2017.07.062
|
[88] |
Y. Ji, Y.C. Zhang, and C.Y. Wang, Li-ion cell operation at low temperatures, J. Electrochem. Soc., 160(2013), No. 4, p. A636. doi: 10.1149/2.047304jes
|
[89] |
J. Xu, X. Wang, N.Y. Yuan, B.Q. Hu, J.N. Ding, and S.H. Ge, Graphite-based lithium ion battery with ultrafast charging and discharging and excellent low temperature performance, J. Power Sources, 430(2019), p. 74. doi: 10.1016/j.jpowsour.2019.05.024
|
[90] |
K. Xu, A. von Cresce, and U. Lee, Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface, Langmuir, 26(2010), No. 13, p. 11538. doi: 10.1021/la1009994
|
[91] |
L. Zhao, Y.S. Hu, H. Li, Z.X. Wang, and L.Q. Chen, Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids f7or Li-ion batteries, Adv. Mater., 23(2011), No. 11, p. 1385. doi: 10.1002/adma.201003294
|
[92] |
E. Pohjalainen, T. Rauhala, M. Valkeapää, J. Kallioinen, and T. Kallio, Effect of Li4Ti5O12 particle size on the performance of lithium ion battery electrodes at high C-rates and low temperatures, J. Phys. Chem. C, 119(2015), No. 5, p. 2277. doi: 10.1021/jp509428c
|