留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 5
May  2023

图(12)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  702
  • HTML全文浏览量:  256
  • PDF下载量:  29
  • 被引次数: 0
Chen Ma, Dong Wang, Jinyu Liu, Ning Peng, Wei Shang, and Yuqing Wen, Preparation and property of self-sealed plasma electrolytic oxide coating on magnesium alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 959-969. https://doi.org/10.1007/s12613-022-2542-0
Cite this article as:
Chen Ma, Dong Wang, Jinyu Liu, Ning Peng, Wei Shang, and Yuqing Wen, Preparation and property of self-sealed plasma electrolytic oxide coating on magnesium alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 959-969. https://doi.org/10.1007/s12613-022-2542-0
引用本文 PDF XML SpringerLink
研究论文

镁合金自密封等离子电解氧化膜的制备及性能

  • 通讯作者:

    尚伟    E-mail: 2001018@glut.edu.cn

    温玉清    E-mail: 2006027@glut.edu.cn

文章亮点

  • (1) 该涂层是通过将四次电压和TiO2溶胶添加相结合来制备的。
  • (2) 该自密封涂层的氧化和密封同步进行,比传统的氧化然后密封工艺操作简单。
  • (3) 该自密封涂层的孔隙率降低,耐腐蚀性能提高。
  • (4)分析了PEO涂层自密封行为的机理。
  • 等离子体电化学氧化(PEO)是一种应用广泛的在镁合金表面形成陶瓷涂层的表面改性技术。但是,在升压过程中,由于产生的电火花不断破坏涂层,在涂层表面形成微孔和微裂纹,为材料的腐蚀埋下隐患。材料科学中的一个长期追求是开发基于单一材料的自密封涂层,无需先氧化然后密封。因此,本文报道了一种通过四次电压和溶胶添加制备自密封PEO涂层的新方法。通过扫描电子显微镜(SEM)、能量色散X射线光谱(EDS)和X射线衍射仪(XRD)对其形貌和结构进行了表征。使用Image Pro Plus 6.0测定涂层的孔隙率,涂层孔隙率从8.53%降至0.51%。同时,涂层厚度比传统PEO涂层增加了四倍。使用电化学测试评估了每个样品的耐蚀性能,结果表明,该自密封涂层的icorr从9.152 × 10−2降低到6.152 × 10–4 mA·cm−2,样品的RT从2.19 × 104提高到2.33 × 105 Ω·cm2。盐雾试验表明,涂层表面仅在336 h出现腐蚀点。此外,本文还分析了PEO涂层自密封行为的机理。
  • Research Article

    Preparation and property of self-sealed plasma electrolytic oxide coating on magnesium alloy

    + Author Affiliations
    • Plasma electrochemical oxidation (PEO) is a surface modification technology to form ceramic coatings on magnesium alloys. However, its application is limited due to its defects. This work reports a novel preparation of in-situ sealing of PEO coatings by four-layer voltage and sol addition. The morphology and structure were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffractometer (XRD). Image-Pro Plus 6.0 was used to determine the porosity of the coating, which was decreased from 8.53% to 0.51%. Simultaneously, the coating thickness was increased by a factor of four. The anti-corrosion performance of each sample was evaluated using electrochemical tests, and the findings revealed that the corrosion current density of coatings (icorr) of the samples were lowered from 9.152 × 10–2 to 6.152 × 10–4 mA·cm−2, and the total resistance (RT) of the samples were enhanced from 2.19 × 104 to 2.33 × 105 Ω·cm2. The salt spray test used to simulate the actual environment showed that corrosion points appeared on the surface of the coating only at the 336 h. In addition, the mechanism of PEO self-sealing behavior was described in this article.
    • loading
    • [1]
      Y. Yang, X.M. Xiong, J. Chen, X.D. Peng, D.L. Chen, and F.S. Pan, Research advances in magnesium and magnesium alloys worldwide in 2020, J. Magnes. Alloys, 9(2021), No. 3, p. 705. doi: 10.1016/j.jma.2021.04.001
      [2]
      K. Luo, L. Zhang, G.H. Wu, W.C. Liu, and W.J. Ding, Effect of Y and Gd content on the microstructure and mechanical properties of Mg–Y–RE alloys, J. Magnes. Alloys, 7(2019), No. 2, p. 345. doi: 10.1016/j.jma.2019.03.002
      [3]
      H.L. Huang and W.L. Yang, Corrosion behavior of AZ91D magnesium alloy in distilled water, Arab. J. Chem., 13(2020), No. 7, p. 6044. doi: 10.1016/j.arabjc.2020.05.004
      [4]
      G.Z. Kang and H. Li, Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 567. doi: 10.1007/s12613-020-2216-8
      [5]
      F. Samadpour, G. Faraji, and A. Siahsarani, Processing of AM60 magnesium alloy by hydrostatic cyclic expansion extrusion at elevated temperature as a new severe plastic deformation method, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 669. doi: 10.1007/s12613-019-1921-7
      [6]
      J.H. Chu, L.B. Tong, M. Wen, et al., Inhibited corrosion activity of biomimetic graphene-based coating on Mg alloy through a cerium intermediate layer, Carbon, 161(2020), p. 577. doi: 10.1016/j.carbon.2020.01.086
      [7]
      L.X. Li, Z.H. Xie, C. Fernandez, et al., Development of a thiophene derivative modified LDH coating for Mg alloy corrosion protection, Electrochim. Acta, 330(2020), art. No. 135186. doi: 10.1016/j.electacta.2019.135186
      [8]
      G.Q. Duan, L.X. Yang, S.J. Liao, et al., Designing for the chemical conversion coating with high corrosion resistance and low electrical contact resistance on AZ91D magnesium alloy, Corros. Sci., 135(2018), p. 197. doi: 10.1016/j.corsci.2018.02.051
      [9]
      Ö. Bayrak, H. Ghahramanzadeh Asl, and A. Ak, Protein adsorption, cell viability and corrosion properties of Ti6Al4V alloy treated by plasma oxidation and anodic oxidation, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1269. doi: 10.1007/s12613-020-2020-5
      [10]
      Z.Q. Zhang, L. Wang, M.Q. Zeng, et al., Corrosion resistance and superhydrophobicity of one-step polypropylene coating on anodized AZ31 Mg alloy, J. Magnes. Alloys, 9(2021), No. 4, p. 1443. doi: 10.1016/j.jma.2020.06.011
      [11]
      D. Jiang, H. Zhou, S. Wan, G.Y. Cai, and Z.H. Dong, Fabrication of superhydrophobic coating on magnesium alloy with improved corrosion resistance by combining micro-arc oxidation and cyclic assembly, Surf. Coat. Technol., 339(2018), p. 155. doi: 10.1016/j.surfcoat.2018.02.001
      [12]
      Y.B. Zhao, L.Q. Shi, X.J. Ji, et al., Corrosion resistance and antibacterial properties of polysiloxane modified layer-by-layer assembled self-healing coating on magnesium alloy, J. Colloid Interface Sci., 526(2018), p. 43. doi: 10.1016/j.jcis.2018.04.071
      [13]
      H. Ashassi-Sorkhabi, S. Moradi-Alavian, R. Jafari, A. Kazempour, and E. Asghari, Effect of amino acids and montmorillonite nanoparticles on improving the corrosion protection characteristics of hybrid sol–gel coating applied on AZ91 Mg alloy, Mater. Chem. Phys., 225(2019), p. 298. doi: 10.1016/j.matchemphys.2018.12.059
      [14]
      T.X. Lu, C.G. Chen, Z.M. Guo, P. Li, and M.X. Guo, Tungsten nanoparticle-strengthened copper composite prepared by a sol-gel method and in situ reaction, Int. J. Miner. Metall. Mater., 26(2019), No. 11, p. 1477. doi: 10.1007/s12613-019-1889-3
      [15]
      V. Dehnavi, W.J. Binns, J.J. Noël, D.W. Shoesmith, and B.L. Luan, Growth behaviour of low-energy plasma electrolytic oxidation coatings on a magnesium alloy, J. Magnes. Alloys, 6(2018), No. 3, p. 229. doi: 10.1016/j.jma.2018.05.008
      [16]
      M. Roknian, A. Fattah-Alhosseini, S.O. Gashti, and M.K. Keshavarz, Study of the effect of ZnO nanoparticles addition to PEO coatings on pure titanium substrate: Microstructural analysis, antibacterial effect and corrosion behavior of coatings in Ringer’s physiological solution, J. Alloys Compd., 740(2018), p. 330. doi: 10.1016/j.jallcom.2017.12.366
      [17]
      X.P. Lu, C. Blawert, K.U. Kainer, and M.L. Zheludkevich, Investigation of the formation mechanisms of plasma electrolytic oxidation coatings on Mg alloy AM50 using particles, Electrochim. Acta, 196(2016), p. 680. doi: 10.1016/j.electacta.2016.03.042
      [18]
      H. Tang and Y. Gao, Preparation and characterization of hydroxyapatite containing coating on AZ31 magnesium alloy by micro-arc oxidation, J. Alloys Compd., 688(2016), p. 699. doi: 10.1016/j.jallcom.2016.07.079
      [19]
      D.V. Mashtalyar, S.V. Gnedenkov, S.L. Sinebryukhov, I.M. Imshinetskiy, and A.V. Puz’, Plasma electrolytic oxidation of the magnesium alloy MA8 in electrolytes containing TiN nanoparticles, J. Mater. Sci. Technol., 33(2017), No. 5, p. 461. doi: 10.1016/j.jmst.2017.01.021
      [20]
      K.R. Wu, C.H. Hung, C.W. Yeh, and J.K. Wu, Microporous TiO2–WO3/TiO2 films with visible-light photocatalytic activity synthesized by micro arc oxidation and DC magnetron sputtering, Appl. Surf. Sci., 263(2012), p. 688. doi: 10.1016/j.apsusc.2012.09.142
      [21]
      F. Muhaffel and H. Cimenoglu, Development of corrosion and wear resistant micro-arc oxidation coating on a magnesium alloy, Surf. Coat. Technol., 357(2019), p. 822. doi: 10.1016/j.surfcoat.2018.10.089
      [22]
      A. Fattah-Alhosseini, K. Babaei, and M. Molaei, Plasma electrolytic oxidation (PEO) treatment of zinc and its alloys: A review, Surf. Interfaces, 18(2020), art. No. 100441. doi: 10.1016/j.surfin.2020.100441
      [23]
      B.W. Zhu, L. Wang, Y.Z. Wu, W. Yue, J. Liang, and B.C. Cao, Improving corrosion resistance and biocompatibility of AZ31 magnesium alloy by ultrasonic cold forging and micro-arc oxidation, J. Biomater. Appl., 36(2022), No. 9, p. 1664. doi: 10.1177/08853282211046776
      [24]
      M. Babaei, C. Dehghanian, P. Taheri, and M. Babaei, Effect of duty cycle and electrolyte additive on photocatalytic performance of TiO2–ZrO2 composite layers prepared on CP Ti by micro arc oxidation method, Surf. Coat. Technol., 307(2016), p. 554. doi: 10.1016/j.surfcoat.2016.09.050
      [25]
      M. S. Joni and A. Fattah-Alhosseini, Effect of KOH concentration on the electrochemical behavior of coatings formed by pulsed DC micro-arc oxidation (MAO) on AZ31B Mg alloy, J. Alloys Compd., 661(2016), p. 237. doi: 10.1016/j.jallcom.2015.11.169
      [26]
      M. Vakili-Azghandi and A. Fattah-Alhosseini, Effects of duty cycle, current frequency, and current density on corrosion behavior of the plasma electrolytic oxidation coatings on 6061Al alloy in artificial seawater, Metall. Mater. Trans. A, 48(2017), No. 10, p. 4681. doi: 10.1007/s11661-017-4205-8
      [27]
      L.J. Bai, B.X. Dong, G.T. Chen, T. Xin, J.N. Wu, and X.D. Sun, Effect of positive pulse voltage on color value and corrosion property of magnesium alloy black micro-arc oxidation ceramic coating, Surf. Coat. Technol., 374(2019), p. 402. doi: 10.1016/j.surfcoat.2019.05.067
      [28]
      Y.W. Song, K.H. Dong, D.Y. Shan, and E.H. Han, Investigation of a novel self-sealing pore micro-arc oxidation film on AM60 magnesium alloy, J. Magnes. Alloys, 1(2013), No. 1, p. 82. doi: 10.1016/j.jma.2013.02.009
      [29]
      Z. Li, Z. Chen, S. Feng, T. Zhao, and W.Z. Wang, Effects of Na2WO4 on the MAO coatings on AZ80, Surf. Eng., 36(2020), p. 817. doi: 10.1080/02670844.2019.1656371
      [30]
      B. Zou, G.H. Lü, G.L. Zhang, and Y.Y. Tian, Effect of current frequency on properties of coating formed by microarc oxidation on AZ91D magnesium alloy, Trans. Nonferrous Met. Soc. China, 25(2015), No. 5, p. 1500. doi: 10.1016/S1003-6326(15)63751-7
      [31]
      X.J. Cui, C.H. Liu, R.S. Yang, M.T. Li, and X.Z. Lin, Self-sealing micro-arc oxidation coating on AZ91D Mg alloy and its formation mechanism, Surf. Coat. Technol., 269(2015), p. 228. doi: 10.1016/j.surfcoat.2014.09.071
      [32]
      S.N. Pak, Z.P. Yao, K.S. Ju, C.N. Ri, and Q.X. Xia, Effect of organic additives on structure and corrosion resistance of MAO coating, Vacuum, 151(2018), p. 8. doi: 10.1016/j.vacuum.2018.01.049
      [33]
      M. Nadimi and C. Dehghanian, Incorporation of ZnO–ZrO2 nanoparticles into TiO2 coatings obtained by PEO on Ti–6Al–4V substrate and evaluation of its corrosion behavior, microstructural and antibacterial effects exposed to SBF solution, Ceram. Int., 47(2021), No. 23, p. 33413. doi: 10.1016/j.ceramint.2021.08.248
      [34]
      M.M. Krishtal, P.V. Ivashin, I.S. Yasnikov, and A.V. Polunin, Effect of nanosize SiO2 particles added into electrolyte on the composition and morphology of oxide layers formed in alloy AK6M2 under microarc oxidizing, Met. Sci. Heat Treat., 57(2015), No. 7-8, p. 428. doi: 10.1007/s11041-015-9900-8
      [35]
      W.P. Li, M.Q. Tang, L.Q. Zhu, and H.C. Liu, Formation of microarc oxidation coatings on magnesium alloy with photocatalytic performance, Appl. Surf. Sci., 258(2012), No. 24, p. 10017. doi: 10.1016/j.apsusc.2012.06.066
      [36]
      Z.M. Shi, M. Liu, and A. Atrens, Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation, Corros. Sci., 52(2010), No. 2, p. 579. doi: 10.1016/j.corsci.2009.10.016
      [37]
      M.F. He, L. Liu, Y.T. Wu, Z.X. Tang, and W.B. Hu, Corrosion properties of surface-modified AZ91D magnesium alloy, Corros. Sci., 50(2008), No. 12, p. 3267. doi: 10.1016/j.corsci.2008.09.034
      [38]
      T.F. Xiang, S.L. Zheng, M. Zhang, H.R. Sadig, and C. Li, Bioinspired slippery zinc phosphate coating for sustainable corrosion protection, ACS Sustainable Chem. Eng., 6(2018), No. 8, p. 10960. doi: 10.1021/acssuschemeng.8b02345
      [39]
      M. Ramezanzadeh, B. Ramezanzadeh, M. Mahdavian, and G. Bahlakeh, Development of metal-organic framework (MOF) decorated graphene oxide nanoplatforms for anti-corrosion epoxy coatings, Carbon, 161(2020), p. 231. doi: 10.1016/j.carbon.2020.01.082
      [40]
      A.K. Behera, A. Das, S. Das, and A. Mallik, Electrochemically functionalized graphene as an anti-corrosion reinforcement in Cu matrix composite thin films, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1525. doi: 10.1007/s12613-020-2124-y
      [41]
      W. Shang, F. Wu, Y.Q. Wen, C.B. He, X.Q. Zhan, and Y.Q. Li, Corrosion resistance and mechanism of graphene oxide composite coatings on magnesium alloy, Ind. Eng. Chem. Res., 58(2019), No. 3, p. 1200. doi: 10.1021/acs.iecr.8b05303
      [42]
      C.Q. Wu, Q. Liu, R.R. Chen, et al., Fabrication of ZIF-8@SiO2 micro/nano hierarchical superhydrophobic surface on AZ31 magnesium alloy with impressive corrosion resistance and abrasion resistance, ACS Appl. Mater. Interfaces, 9(2017), No. 12, p. 11106. doi: 10.1021/acsami.6b16848
      [43]
      A. Fattah-Alhosseini, R. Chaharmahali, and K. Babaei, Effect of particles addition to solution of plasma electrolytic oxidation (PEO) on the properties of PEO coatings formed on magnesium and its alloys: A review, J. Magnes. Alloys, 8(2020), No. 3, p. 799. doi: 10.1016/j.jma.2020.05.001
      [44]
      A. Bordbar-Khiabani, B. Yarmand, and M. Mozafari, Enhanced corrosion resistance and in-vitro biodegradation of plasma electrolytic oxidation coatings prepared on AZ91 Mg alloy using ZnO nanoparticles-incorporated electrolyte, Surf. Coat. Technol., 360(2019), p. 153. doi: 10.1016/j.surfcoat.2019.01.002
      [45]
      H.P. Duan, C.W. Yan, and F.H. Wang, Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution, Electrochim. Acta, 52(2007), No. 15, p. 5002. doi: 10.1016/j.electacta.2007.02.021
      [46]
      Z.R. Zheng, M.C. Zhao, L.L. Tan, et al., Corrosion behavior of a self-sealing coating containing CeO2 particles on pure Mg produced by micro-arc oxidation, Surf. Coat. Technol., 386(2020), art. No. 125456. doi: 10.1016/j.surfcoat.2020.125456

    Catalog


    • /

      返回文章
      返回