Cite this article as:

Boqiang Cui, Guorui Feng, Jinwen Bai, Gaili Xue, Kai Wang, Xudong Shi, Shanyong Wang, Zehua Wang, and Jun Guo, Failure characteristics and the damage evolution of a composite bearing structure in pillar-side cemented paste backfilling, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp.1524-1537. https://dx.doi.org/10.1007/s12613-022-2545-x
Boqiang Cui, Guorui Feng, Jinwen Bai, Gaili Xue, Kai Wang, Xudong Shi, Shanyong Wang, Zehua Wang, and Jun Guo, Failure characteristics and the damage evolution of a composite bearing structure in pillar-side cemented paste backfilling, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp.1524-1537. https://dx.doi.org/10.1007/s12613-022-2545-x
引用本文 PDF XML SpringerLink

柱旁双侧充填复合承载结构的破坏特征及损伤演化

摘要: 柱旁双侧充填所形成的“充填体-煤柱-充填体”协同承载结构(BPB煤充结构体)在承担覆岩载荷、保障煤矿安全开采方面发挥着重要的作用,其破坏特征及损伤演化值得进一步探索。本文开展了六组不同类型的BPB煤充结构体单轴压缩试验,结合数字图像相关技术(DSCM)监测了试样表面的变形特征,建立了基于峰值应力时能量耗散特征的BPB煤充结构体损伤模型,并探讨了充填体对煤柱的失稳防控机理。研究结果表明:BPB煤充结构体的应变集中带和宏观裂纹首先出现在煤–充界面处,然后在充填体元件中扩展,最终出现在煤体元件上。BPB煤充结构体的弹性应变能在加载初期逐渐累积,峰值应力处达到最大值,在峰后阶段迅速释放;耗散能在加载初期累积较少,加载后期迅速增加。基于峰值应力时能量耗散特征所建立的BPB煤充结构体损伤模型与试验结果吻合良好,可为BPB煤充结构体的失稳防控提供依据。结合BPB煤充结构体破坏形态可知,充填体具有抑制煤柱变形的作用,随着充填体元件体积占比的减小,其对煤柱的约束作用逐渐减弱,BPB煤充结构体更容易失稳,破坏也更加严重。

 

Failure characteristics and the damage evolution of a composite bearing structure in pillar-side cemented paste backfilling

Abstract: A backfilling body-coal pillar-backfilling body (BPB) structure formed by pillar-side cemented paste backfilling can bear overburden stress and ensure safe mining. However, the failure response of BPB composite samples must be investigated. This paper examines the deformation characteristics and damage evolution of six types of BPB composite samples using a digital speckle correlation method under uniaxial compression conditions. A new damage evolution equation was established on the basis of the input strain energy and dissipated strain energy at the peak stress. The prevention and control mechanisms of the backfilling body on the coal pillar instability were discussed. The results show that the deformation localization and macroscopic cracks of the BPB composite samples first appeared at the coal–backfilling interface, and then expanded to the backfilling elements, ultimately appearing in the coal elements. The elastic strain energy in the BPB composite samples reached a maximum at the peak stress, whereas the dissipated energy continued to accumulate and increase. The damage evolution curve and equation agree well with the test results, providing further understanding of instability prevention and the control mechanisms of the BPB composite samples. The restraining effect on the coal pillar was gradually reduced with decreasing backfilling body element’s volume ratio, and the BPB composite structure became more vulnerable to failure. This research is expected to guide the design, stability monitoring, instability prevention, and control of BPB structures in pillar-side cemented paste backfilling mining.

 

/

返回文章
返回