Cite this article as: |
Wanlin Wang, Lankun Wang, and Peisheng Lyu, Kinetics of austenite growth and bainite transformation during reheating and cooling treatments of high strength microalloyed steel produced by sub-rapid solidification, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 354-364. https://doi.org/10.1007/s12613-022-2548-7 |
吕培生 E-mail: Lyu.peisheng@csu.edu.cn
[1] |
X.D. Huo, J.N. Xia, L.J. Li, Z.W. Peng, S.J. Chen, and C.T. Peng, A review of research and development on titanium microalloyed high strength steels, Mater. Res. Express, 5(2018), No. 6, art. No. 062002. doi: 10.1088/2053-1591/aacb61
|
[2] |
T.N. Baker, Microalloyed steels, Ironmaking Steelmaking, 43(2016), No. 4, p. 264. doi: 10.1179/1743281215Y.0000000063
|
[3] |
A. Zaitsev and N. Arutyunyan, Low-carbon Ti–Mo microalloyed hot rolled steels: Special features of the formation of the structural state and mechanical properties, Metals, 11(2021), No. 10, art. No. 1584. doi: 10.3390/met11101584
|
[4] |
Y. Liu, Y.H. Sun, and H.T. Wu, Effects of chromium on the microstructure and hot ductility of Nb-microalloyed steel, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 1011. doi: 10.1007/s12613-020-2092-2
|
[5] |
Y.N. Zhao, Z.Q. Ma, L.M. Yu, J. Dong, and Y.C. Liu, The simultaneous improvements of strength and ductility in additive manufactured Ni-based superalloy via controlling cellular subgrain microstructure, J. Mater. Sci. Technol., 68(2021), p. 184. doi: 10.1016/j.jmst.2020.07.011
|
[6] |
L. Yang, Y. Li, Z.L. Xue, and C.G. Cheng, Effect of different thermal schedules on ductility of microalloyed steel slabs during continuous casting, Metals, 9(2019), No. 1, art. No. 37. doi: 10.3390/met9010037
|
[7] |
S.K. Giri, T. Chanda, S. Chatterjee, and A. Kumar, Hot ductility of C–Mn and microalloyed steels evaluated for thin slab continuous casting process, Mater. Sci. Technol., 30(2014), No. 3, p. 268. doi: 10.1179/1743284713Y.0000000348
|
[8] |
J. Zhou, Y.L. Kang, and X.P. Mao, Precipitation characteristic of high strength steels microalloyed with titanium produced by compact strip production, J. Univ. Sci. Technol. Beijing, 15(2008), No. 4, p. 389. doi: 10.1016/S1005-8850(08)60074-2
|
[9] |
N. Zapuskalov, Comparison of continuous strip casting with conventional technology, ISIJ Int., 43(2003), No. 8, p. 1115. doi: 10.2355/isijinternational.43.1115
|
[10] |
S. Ge, M. Isac, and R.I.L. Guthrie, Progress of strip casting technology for steel; historical developments, ISIJ Int., 52(2012), No. 12, p. 2109. doi: 10.2355/isijinternational.52.2109
|
[11] |
S. Ge, M. Isac, and R.I.L. Guthrie, Progress in strip casting technologies for steel; technical developments, ISIJ Int., 53(2013), No. 5, p. 729. doi: 10.2355/isijinternational.53.729
|
[12] |
A. Maleki, A. Taherizadeh, and N. Hosseini, Twin roll casting of steels: An overview, ISIJ Int., 57(2017), No. 1, p. 1. doi: 10.2355/isijinternational.ISIJINT-2016-502
|
[13] |
J.Y. Heo, M.S. Baek, K.J. Euh, and K.A. Lee, Microstructure, tensile and fatigue properties of Al–5wt.%Mg alloy manufactured by twin roll strip casting, Met. Mater. Int., 24(2018), No. 5, p. 992. doi: 10.1007/s12540-018-0123-6
|
[14] |
Y. Kwon, J.H. Hwang, H.C. Choi, et al., Microstructure and tensile properties of ferritic lightweight steel produced by twin-roll casting, Met. Mater. Int., 26(2020), No. 1, p. 75. doi: 10.1007/s12540-019-00314-2
|
[15] |
R. Wechsler, The status of twin-roll casting technology, Scand. J. Metall., 32(2003), No. 1, p. 58. doi: 10.1034/j.1600-0692.2003.00636.x
|
[16] |
M. Ferry, Direct Strip Casting of Metals and Alloys, Woodhead Publishing, Cambridge, 2006.
|
[17] |
Z.P. Xiong, A.G. Kostryzhev, N.E. Stanford, and E.V. Pereloma, Effect of deformation on microstructure and mechanical properties of dual phase steel produced via strip casting simulation, Mater. Sci. Eng. A, 651(2016), p. 291. doi: 10.1016/j.msea.2015.10.120
|
[18] |
Z.P. Xiong, A.G. Kostryzhev, N.E. Stanford, and E.V. Pereloma, Microstructures and mechanical properties of dual phase steel produced by laboratory simulated strip casting, Mater. Des., 88(2015), p. 537. doi: 10.1016/j.matdes.2015.09.031
|
[19] |
Z.P. Xiong, A.G. Kostryzhev, A.A. Saleh, L. Chen, and E.V. Pereloma, Microstructures and mechanical properties of TRIP steel produced by strip casting simulated in the laboratory, Mater. Sci. Eng. A, 664(2016), p. 26. doi: 10.1016/j.msea.2016.03.106
|
[20] |
Z.P. Xiong, A.G. Kostryzhev, L. Chen, and E.V. Pereloma, Microstructure and mechanical properties of strip cast TRIP steel subjected to thermo-mechanical simulation, Mater. Sci. Eng. A, 677(2016), p. 356. doi: 10.1016/j.msea.2016.09.055
|
[21] |
M.J. Ha, W.S. Kim, H.K. Moon, B.J. Lee, and S. Lee, Analysis and prevention of dent defects formed during strip casting of twin-induced plasticity steels, Metall. Mater. Trans. A, 39(2008), No. 5, p. 1087. doi: 10.1007/s11661-008-9496-3
|
[22] |
M. Daamen, W. Nessen, P.T. Pinard, S. Richter, A. Schwedt, and G. Hirt, Deformation behavior of high-manganese TWIP steels produced by twin-roll strip casting, Procedia Eng., 81(2014), p. 1535. doi: 10.1016/j.proeng.2014.10.186
|
[23] |
S.L. Shrestha, K.Y. Xie, C. Zhu, et al., Cluster strengthening of Nb-microalloyed ultra-thin cast strip steels produced by the CASTRIP® process, Mater. Sci. Eng. A, 568(2013), p. 88. doi: 10.1016/j.msea.2013.01.021
|
[24] |
K.Y. Xie, T.X. Zheng, J.M. Cairney, et al., Strengthening from Nb-rich clusters in a Nb-microalloyed steel, Scripta. Mater., 66(2012), No. 9, p. 710. doi: 10.1016/j.scriptamat.2012.01.029
|
[25] |
L. Xu, J. Shi, W.Q. Cao, M.Q. Wang, W.J. Hui, and H. Dong, Improved mechanical properties in Ti-bearing martensitic steel by precipitation and grain refinement, J. Mater. Sci., 46(2011), No. 19, p. 6384. doi: 10.1007/s10853-011-5586-5
|
[26] |
L. Xu, J. Shi, W.Q. Cao, M.Q. Wang, W.J. Hui, and H. Dong, Yield strength enhancement of martensitic steel through titanium addition, J. Mater. Sci., 46(2011), No. 10, p. 3653. doi: 10.1007/s10853-011-5282-5
|
[27] |
Y. Han, J. Shi, L. Xu, W.Q. Cao, and H. Dong, Effect of hot rolling temperature on grain size and precipitation hardening in a Ti-microalloyed low-carbon martensitic steel, Mater. Sci. Eng. A, 553(2012), p. 192. doi: 10.1016/j.msea.2012.06.015
|
[28] |
M.A. Hafeez, A. Farooq, K.B. Tayyab, and M.A. Arshad, Effect of thermomechanical cyclic quenching and tempering treatments on microstructure, mechanical and electrochemical properties of AISI 1345 steel, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 688. doi: 10.1007/s12613-020-2139-4
|
[29] |
G.W. Yang, X.J. Sun, Z.D. Li, X.X. Li, and Q.L. Yong, Effects of vanadium on the microstructure and mechanical properties of a high strength low alloy martensite steel, Mater. Des., 50(2013), p. 102. doi: 10.1016/j.matdes.2013.03.019
|
[30] |
G.W. Yang, Z.D. Li, X.J. Sun, X. Yong, and Q.L. Yong, Ultrafine grained austenite in a low carbon vanadium microalloyed steel, J. Iron Steel Res. Int., 20(2013), No. 4, p. 64. doi: 10.1016/S1006-706X(13)60084-9
|
[31] |
P.A. Manohar, D.P. Dunne, T. Chandra, and C.R. Killmore, Grain growth predictions in microalloyed steels, ISIJ Int., 36(1996), No. 2, p. 194. doi: 10.2355/isijinternational.36.194
|
[32] |
J. Moon, J. Lee, and C. Lee, Prediction for the austenite grain size in the presence of growing particles in the weld HAZ of Ti-microalloyed steel, Mater. Sci. Eng. A, 459(2007), No. 1-2, p. 40. doi: 10.1016/j.msea.2006.12.073
|
[33] |
G.W. Yang, X.J. Sun, Q.L. Yong, Z.D. Li, and X.X. Li, Austenite grain refinement and isothermal growth behavior in a low carbon vanadium microalloyed steel, J. Iron Steel Res. Int., 21(2014), No. 8, p. 757. doi: 10.1016/S1006-706X(14)60138-2
|
[34] |
Y. Shen, B. Chen, and C. Wang, In situ observation and growth kinetics of bainite laths in the coarse-grained heat-affected zone of 2.25Cr–1Mo heat-resistant steel during simulated welding, Metall. Mater. Trans. A, 52(2021), No. 1, p. 14. doi: 10.1007/s11661-020-06061-z
|
[35] |
Z.W. Hu, G. Xu, H.J. Hu, L. Wang, and Z.L. Xue, In situ measured growth rates of bainite plates in an Fe–C–Mn–Si superbainitic steel, Int. J. Miner. Metall. Mater., 21(2014), No. 4, p. 371. doi: 10.1007/s12613-014-0918-5
|
[36] |
P.S. Lyu, W.L. Wang, H.R. Qian, J.C. Wu, and Y. Fang, Formation of naturally deposited film and its effect on interfacial heat transfer during strip casting of martensitic steel, JOM, 72(2020), No. 5, p. 1910. doi: 10.1007/s11837-020-04049-z
|
[37] |
P.S. Lyu, W.L. Wang, C.H. Wang, L.J. Zhou, Y. Fang, and J.C. Wu, Effect of sub-rapid solidification and secondary cooling on microstructure and properties of strip cast low-carbon bainitic–martensitic steel, Metall. Mater. Trans. A, 52(2021), No. 9, p. 3945. doi: 10.1007/s11661-021-06356-9
|
[38] |
W.L. Wang, H.R. Qian, D.W. Cai, L.J. Zhou, S. Mao, and P.S. Lyu, Microstructure and magnetic properties of 6.5 wt pct Si steel strip produced by simulated strip casting process, Metall. Mater. Trans. A, 52(2021), No. 5, p. 1799. doi: 10.1007/s11661-021-06191-y
|
[39] |
S.J. Yao, L.X. Du, X.H. Liu, G.D. Wang, Isothermal growth kinetics of ultra-fine austenite grains in a Nb–V–Ti microalloyed steel, J. Mater. Sci. Technol., 25(2009), No. 5, p. 615.
|
[40] |
H. Hu and B.B. Rath, On the time exponent in isothermal grain growth, Metall. Trans., 1(1970), No. 11, p. 3181. doi: 10.1007/BF03038435
|
[41] |
S. Gündüz and R.C. Cochrane, Influence of cooling rate and tempering on precipitation and hardness of vanadium microalloyed steel, Mater. Des., 26(2005), No. 6, p. 486.
|
[42] |
L.J. Li and R.W. Messler, Dissolution kinetics of NbC particles in the heat-affected zone of type 347 austenitic stainless steel, Metall. Mater. Trans. A, 33(2002), No. 7, p. 2031. doi: 10.1007/s11661-002-0035-3
|
[43] |
F.J. Ma, G.H. Wen, P. Tang, G.D. Xu, F. Mei, and W.L. Wang, Effect of cooling rate on the precipitation behavior of carbonitride in microalloyed steel slab, Metall. Mater. Trans. B, 42(2011), No. 1, p. 81. doi: 10.1007/s11663-010-9454-5
|
[44] |
K.Y. Tsai, M.H. Tsai, and J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mater., 61(2013), No. 13, p. 4887. doi: 10.1016/j.actamat.2013.04.058
|
[45] |
S. Uhm, J. Moon, C. Lee, J. Yoon, and B. Lee, Prediction model for the austenite grain size in the coarse grained heat affected zone of Fe–C–Mn steels: Considering the effect of initial grain size on isothermal growth behavior, ISIJ Int., 44(2004), No. 7, p. 1230. doi: 10.2355/isijinternational.44.1230
|
[46] |
J.Y. Tian, G. Xu, L. Wang, M.X. Zhou, and H.J. Hu, In situ observation of the lengthening rate of bainite sheaves during continuous cooling process in a Fe–C–Mn–Si superbainitic steel, Trans. Indian Inst. Met., 71(2018), No. 1, p. 185. doi: 10.1007/s12666-017-1151-5
|
[47] |
L. Fielding, The bainite controversy, Mater. Sci. Technol., 29(2013), p. 383. doi: 10.1179/1743284712Y.0000000157
|
[48] |
Z.X. Qiao, Y.C. Liu, L.M. Yu, and Z.M. Gao, Formation mechanism of granular bainite in a 30CrNi3MoV steel, J. Alloys Compd., 475(2009), No. 1-2, p. 560. doi: 10.1016/j.jallcom.2008.07.110
|
[49] |
J. Nutter, H. Farahani, W.M. Rainforth, and S. van der Zwaag, Direct TEM observation of α/γ interface migration during cyclic partial phase transformations at intercritical temperatures in an Fe–0.1C −0.5Mn alloy, Acta Mater., 178(2019), p. 68. doi: 10.1016/j.actamat.2019.07.047
|
[50] |
Y.C. Liu, D.J. Wang, F. Sommer, and E.J. Mittemeijer, Isothermal austenite–ferrite transformation of Fe–0.04 at.% C alloy: Dilatometric measurement and kinetic analysis, Acta Mater., 56(2008), No. 15, p. 3833. doi: 10.1016/j.actamat.2008.04.015
|
[51] |
Y.C. Liu, L.F. Zhang, F. Sommer, and E.J. Mittemeijer, Kinetics of martensite formation in substitutional Fe–Al alloys: Dilatometric analysis, Metall. Mater. Trans. A, 44(2013), No. 3, p. 1430. doi: 10.1007/s11661-012-1497-6
|
[52] |
X.D. Li, C.J. Shang, X.P. Ma, et al., Elemental distribution in the martensite–austenite constituent in intercritically reheated coarse-grained heat-affected zone of a high-strength pipeline steel, Scripta. Mater., 139(2017), p. 67. doi: 10.1016/j.scriptamat.2017.06.017
|