留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 5
May  2023

图(13)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  789
  • HTML全文浏览量:  212
  • PDF下载量:  77
  • 被引次数: 0
Shulei Yang, Shufeng Yang, Wei Liu, Jingshe Li, Jinguo Gao, and Yi Wang, Microstructure, segregation and precipitate evolution in directionally solidified GH4742 superalloy, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 939-948. https://doi.org/10.1007/s12613-022-2549-6
Cite this article as:
Shulei Yang, Shufeng Yang, Wei Liu, Jingshe Li, Jinguo Gao, and Yi Wang, Microstructure, segregation and precipitate evolution in directionally solidified GH4742 superalloy, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 939-948. https://doi.org/10.1007/s12613-022-2549-6
引用本文 PDF XML SpringerLink
研究论文

定向凝固GH4742高温合金中组织、偏析和析出相演变

  • 通讯作者:

    杨树峰    E-mail: yangshufeng@ustb.edu.cn

文章亮点

  • (1) 系统地研究了冷却速率对GH4742合金微观组织的影响规律并确定了定量匹配关系
  • (2) 发现了大跨度的冷速下元素偏析规律并研究了其变化机理
  • (3) 研究了不同冷却速率下GH4742合金夹杂物、碳化物、γ′相特征演变规律
  • GH4742高温合金是一种先进的结构材料,广泛应用于航空航天、船舶、核电等领域。真空电弧重熔(VAR)通常作为最终熔炼工序,其凝固组织、元素分布和缺陷直接决定了合金的加工和机械性能。本文以区域定向凝固炉模拟真空自耗炉的定向凝固特征,研究了GH4742高温合金在大跨度的冷却速率下的微观结构、元素偏析和析出的演变规律。基于多种镍基高温合金的统计对比,结果表明,在高冷却速率下,主枝晶间距与G1/2V1/4有明显的线性关系,其中GV是温度梯度和拉速。随着冷却速率的降低,一级枝晶间距以一种分散的方式增加。在所有的冷却速率范围内,二级枝晶臂间距与 (GV)−0.4明显线性相关。元素偏析的程度随着冷却速率的增加而增加,随后逐渐减少,这是由于溶质反扩散和树枝状结晶尖端过冷之间的竞争造成的。随着凝固速度的增加,γ′、碳化物和非金属夹杂物的尺寸逐渐减小。γ′沉淀物的形态从梅花状变为立方体,再变为球形。碳化物的形态从块状变为细条状,然后变为汉字状。碳化物的形态受树枝状间形状和元素扩散共同控制。夹杂物以复合夹杂物为主,通常表现为Ti(C,N)以氧化物为异质成核中心,碳化物的外表面包裹的三层结构。随着冷却速率的增加,复合夹杂物的数量密度先增加后减少,这与元素偏析行为密切相关。
  • Research Article

    Microstructure, segregation and precipitate evolution in directionally solidified GH4742 superalloy

    + Author Affiliations
    • The evolution of microstructure, elemental segregation, and precipitation in GH4742 superalloy under a wide range of cooling rates was investigated using zonal melting liquid metal cooling (ZMLMC) experiments. Comparing various nickel-based superalloys, the primary dendrite spacing is significantly linearly correlated with G−1/2V−1/4 at high cooling rates, where G and V are temperature gradient and drawing rate, respectively. As the cooling rate decreases, the primary dendrite spacing increases in a dispersive manner. The secondary dendrite arm spacing is significantly correlated with (GV)−0.4 for all cooling rate ranges. The degree of elemental segregation increases and then decreases as the cooling rate increases, which is due to the competition between solute counter-diffusion and dendrite tip subcooling. With increasing the solidification rate, the size of γ′, carbides, and non-metallic inclusions gradually decreases. The morphology of the γ′ precipitate changes from plume-like to cubic to spherical. The morphology of carbide changes from block to fine-strip then to Chinese-script. The morphology of carbide is controlled by both dendrite interstitial shape and element diffusion. The inclusions are mainly composite inclusions, which usually show the growth of Ti(C,N) with oxide as the heterogeneous nucleation center and carbide on the outer surface of the carbonitride. As the cooling rate increases, the number density of composite inclusions first increases and then decreases, which is closely related to the elemental segregation behavior.
    • loading
    • [1]
      B.J. Zhang, S. Huang, W.Y. Zhang, Q. Tian, and S.F. Chen. Recent development of nickel-based disc alloys and corresponding cast-wrought processing techniques, Acta Metall. Sin., 55(2019), No. 9, p. 1095.
      [2]
      R.H. Wu, Y.S. Zhao, Q. Yin, J.P. Wang, X. Ai, and Z.X. Wen, Atomistic simulation studies of Ni-based superalloys, J. Alloys Compd., 855(2021), art. No. 157355. doi: 10.1016/j.jallcom.2020.157355
      [3]
      M.H. Zhang, B.C. Zhang, Y.J. Wen, and X.H. Qu, Research progress on selective laser melting processing for nickel-based superalloy, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 369. doi: 10.1007/s12613-021-2331-1
      [4]
      S.A. Hosseini, S.M. Abbasi, K.Z. Madar, and H.M.K. Yazdi, The effect of boron and zirconium on wrought structure and γ-γ′ lattice misfit characterization in nickel-based superalloy ATI 718Plus, Mater. Chem. Phys., 211(2018), p. 302. doi: 10.1016/j.matchemphys.2018.01.076
      [5]
      X. Xu, R.M. Ward, M.H. Jacobs, P.D. Lee, and M. Mclean, Tree-ring formation during vacuum arc remelting of INCONEL 718: Part I. Experimental investigation, Metall. Mater. Trans. A, 33(2002), No. 6, p. 1795. doi: 10.1007/s11661-002-0188-0
      [6]
      X.Y. Gao, L. Zhang, X.H. Qu, X.W. Chen, and Y.F. Luan, Effect of interaction of refractories with Ni-based superalloy on inclusions during vacuum induction melting, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1551. doi: 10.1007/s12613-020-2098-9
      [7]
      A. Mitchell, Influence of process parameters during secondary melting of nickel based superalloys, Mater. Sci. Technol., 25(2009), No. 2, p. 186. doi: 10.1179/174328408X386989
      [8]
      X.W. Yan, Q.Y. Xu, G.Q. Tian, Q.W. Liu, J.X. Hou, and B.C. Liu, Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting, J. Mater. Sci. Technol., 67(2021), p. 36. doi: 10.1016/j.jmst.2020.06.051
      [9]
      X.W. Yan, Q.Y. Xu, Q.W. Liu, G.Q. Tian, Z.H. Wen, and B.C. Liu, Dendrite growth in nickel-based superalloy with in situ observation by high temperature confocal laser scanning microscopy and numerical simulation, Mater. Lett., 286(2021), art. No. 129213. doi: 10.1016/j.matlet.2020.129213
      [10]
      Y.J. Zhang, B. Huang, and J.G. Li, Microstructural evolution with a wide range of solidification cooling rates in a Ni-based superalloy, Metall. Mater. Trans. A, 44(2013), No. 4, p. 1641. doi: 10.1007/s11661-013-1645-7
      [11]
      G. Reinhart, D. Grange, L. Abou-Khalil, et al., Impact of solute flow during directional solidification of a Ni-based alloy: In-situ and real-time X-radiography, Acta Mater., 194(2020), p. 68. doi: 10.1016/j.actamat.2020.04.003
      [12]
      L. Ling, Y.F. Han, W. Zhou, et al., Study of microsegregation and laves phase in INCONEL718 superalloy regarding cooling rate during solidification, Metall. Mater. Trans. A, 46(2015), No. 1, p. 354. doi: 10.1007/s11661-014-2614-5
      [13]
      X. Shi, S.C. Duan, W.S. Yang, H.J. Guo, and J. Guo, Effect of cooling rate on microsegregation during solidification of superalloy INCONEL 718 under slow-cooled conditions, Metall. Mater. Trans. B, 49(2018), No. 4, p. 1883. doi: 10.1007/s11663-018-1169-z
      [14]
      L. Wang, Y.J. Yao, J.X. Dong, and M.C. Zhang, Effect of cooling rates on segregation and density variation in the mushy zone during solidification of superalloy Inconel 718, Chem. Eng. Commun., 197(2010), No. 12, p. 1571. doi: 10.1080/00986445.2010.493101
      [15]
      S. Behrouzghaemi and R.J. Mitchell, Morphological changes of γ′ precipitates in superalloy IN738LC at various cooling rates, Mater. Sci. Eng. A, 498(2008), No. 1-2, p. 266. doi: 10.1016/j.msea.2008.07.069
      [16]
      Y.N. Wang, J. Yang, X.L. Xin, R.Z. Wang, and L.Y. Xu, The effect of cooling conditions on the evolution of non-metallic inclusions in high manganese TWIP steels, Metall. Mater. Trans. B, 47(2016), No. 2, p. 1378. doi: 10.1007/s11663-015-0568-7
      [17]
      L. Wang, J. Shen, Y.P. Zhang, H.X. Xu, and H.Z. Fu, Microstructure and mechanical properties of NiAl-based hypereutectic alloy obtained by liquid metal cooling and zone melted liquid metal cooling directional solidification techniques, J. Mater. Res., 31(2016), No. 5, p. 646. doi: 10.1557/jmr.2016.61
      [18]
      Y.J. Zhang and J.G. Li, Characterization of the microstructure evolution and microsegregation in a Ni-based superalloy under super-high thermal gradient directional solidification, Mater. Trans., 53(2012), No. 11, p. 1910. doi: 10.2320/matertrans.M2012173
      [19]
      Y.Z. Zhou, Formation of stray grains during directional solidification of a nickel-based superalloy, Scripta Mater., 65(2011), No. 4, p. 281. doi: 10.1016/j.scriptamat.2011.04.023
      [20]
      A. Wagner, B.A. Shollock, and M. McLean, Grain structure development in directional solidification of nickel-base superalloys, Mater. Sci. Eng. A, 374(2004), No. 1-2, p. 270. doi: 10.1016/j.msea.2004.03.017
      [21]
      S. Kwak, J. Kim, H.S. Ding, et al., Using multiple regression analysis to predict directionally solidified TiAl mechanical property, J. Mater. Sci. Technol., 104(2022), p. 285. doi: 10.1016/j.jmst.2021.06.072
      [22]
      D. Tytko, P.P. Choi, J. Klöwer, A. Kostka, G. Inden, and D. Raabe, Microstructural evolution of a Ni-based superalloy (617B) at 700°C studied by electron microscopy and atom probe tomography, Acta Mater., 60(2012), No. 4, p. 1731. doi: 10.1016/j.actamat.2011.11.020
      [23]
      Z. Qiao, C. Li, H.J. Zhang, H.Y. Liang, Y.C. Liu, and Y. Zhang, Evaluation on elevated-temperature stability of modified 718-type alloys with varied phase configurations, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1123. doi: 10.1007/s12613-019-1949-8
      [24]
      S.F. Yang, S.L. Yang, J.L. Qu, et al., Inclusions in wrought superalloys: A review, J. Iron Steel Res. Int., 28(2021), No. 8, p. 921. doi: 10.1007/s42243-021-00617-y
      [25]
      D.Y. Hu, T. Wang, Q.H. Ma, et al., Effect of inclusions on low cycle fatigue lifetime in a powder metallurgy nickel-based superalloy FGH96, Int. J. Fatigue, 118(2019), p. 237. doi: 10.1016/j.ijfatigue.2018.09.019
      [26]
      J. Jiang, J. Yang, T.T. Zhang, F.P.E. Dunne, and T.B. Britton, On the mechanistic basis of fatigue crack nucleation in Ni superalloy containing inclusions using high resolution electron backscatter diffraction, Acta Mater., 97(2015), p. 367. doi: 10.1016/j.actamat.2015.06.035
      [27]
      S.K. Michelic, D. Loder, T. Reip, A. Ardehali Barani, and C. Bernhard, Characterization of TiN, TiC and Ti(C, N) in titanium-alloyed ferritic chromium steels focusing on the significance of different particle morphologies, Mater. Charact., 100(2015), p. 61. doi: 10.1016/j.matchar.2014.12.014
      [28]
      J.D. Hunt, Steady state columnar and equiaxed growth of dendrites and eutectic, Mater. Sci. Eng., 65(1984), No. 1, p. 75. doi: 10.1016/0025-5416(84)90201-5
      [29]
      W. Kurz and D.J. Fisher, Fundamentals of Solidification, Trans Tech Publication, Switzerland, 1984, p. 83.
      [30]
      R. Trivedi, Interdendritic spacing: Part II. A comparison of theory and experiment, Metall. Mater. Trans. A, 15(1984), No. 6, p. 977. doi: 10.1007/BF02644689
      [31]
      H.S. Whitesell, L. Li, and R.A. Overfelt, Influence of solidification variables on the dendrite arm spacings of Ni-based superalloys, Metall. Mater. Trans. B, 31(2000), No. 3, p. 546. doi: 10.1007/s11663-000-0162-4
      [32]
      P.N. Quested and M. McLean, Solidification morphologies in directionally solidified superalloys, Mater. Sci. Eng., 65(1984), No. 1, p. 171. doi: 10.1016/0025-5416(84)90210-6
      [33]
      G.K. Bouse and J.R. Mihalisin, Superalloys, Supercomposites and Superceramics, Academic Press Inc., London, 1989, p. 99.
      [34]
      S.N. Tewari, M. Vijayakumar, J.E. Lee, and P.A. Curreri, Solutal partition coefficients in nickel-based superalloy PWA-1480, Mater. Sci. Eng. A, 141(1991), No. 1, p. 97. doi: 10.1016/0921-5093(91)90713-W
      [35]
      N. D'Souza, M.G. Ardakani, A. Wagner, B.A. Shollock, and M. McLean, Morphological aspects of competitive grain growth during directional solidification of a nickel-base superalloy, CMSX4, J. Mater. Sci., 37(2002), No. 3, p. 481. doi: 10.1023/A:1013753120867
      [36]
      J.A. Sarreal and G.J. Abbaschian, The effect of solidification rate on microsegregation, Metall. Trans. A, 17(1986), No. 11, p. 2063. doi: 10.1007/BF02645003
      [37]
      X. Tong and C. Beckermann, A diffusion boundary layer model of microsegregation, J. Cryst. Growth, 187(1998), No. 2, p. 289. doi: 10.1016/S0022-0248(97)00878-6
      [38]
      H.Z. Deng, L. Wang, Y. Liu, X. Song, F.Q. Meng, and S. Huang, Evolution behavior of γ″ phase of IN718 superalloy in temperature/stress coupled field, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1949. doi: 10.1007/s12613-021-2317-z
      [39]
      W.G. Zhang, L. Liu, T.W. Huang, X.B. Zhao, Z.H. Yu, and H.Z. Fu, Effect of cooling rate on γ′ precipitate of DZ4125 alloy under high thermal gradient directional solidification, Acta. Metall. Sin., 45(2009), No. 5, p. 592.
      [40]
      X.W. Li, L. Wang, J.S. Dong, and L.H. Lou, Effect of solidification condition and carbon content on the morphology of MC carbide in directionally solidified nickel-base superalloys, J. Mater. Sci. Technol., 30(2014), No. 12, p. 1296. doi: 10.1016/j.jmst.2014.06.010
      [41]
      A. Heckl, R. Rettig, S. Cenanovic, M. Göken, and R.F. Singer, Investigation of the final stages of solidification and eutectic phase formation in Re and Ru containing nickel-base superalloys, J. Cryst. Growth, 312(2010), No. 14, p. 2137. doi: 10.1016/j.jcrysgro.2010.03.041
      [42]
      X.G. Zhang, W. Yang, H.K. Xu, and L.F. Zhang, Effect of cooling rate on the formation of nonmetallic inclusions in X80 pipeline steel, Metals, 9(2019), No. 4, art. No. 392. doi: 10.3390/met9040392

    Catalog


    • /

      返回文章
      返回