留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 5
May  2023

图(9)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  768
  • HTML全文浏览量:  246
  • PDF下载量:  74
  • 被引次数: 0
Hongjian Lu, Yiren Wang, Deqing Gan, Jie Wu, and Xiaojun Wu, Numerical investigation of the mechanical behavior of the backfill–rock composite structure under triaxial compression, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 802-812. https://doi.org/10.1007/s12613-022-2554-9
Cite this article as:
Hongjian Lu, Yiren Wang, Deqing Gan, Jie Wu, and Xiaojun Wu, Numerical investigation of the mechanical behavior of the backfill–rock composite structure under triaxial compression, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 802-812. https://doi.org/10.1007/s12613-022-2554-9
引用本文 PDF XML SpringerLink
研究论文

充填体–围岩组合体三轴力学行为数值模拟试验分析

  • 通讯作者:

    卢宏建    E-mail: luhongjian@ncst.edu.cn

文章亮点

  • (1)构建了基于RFPA3D的充填体–围岩组合体三轴力学行为数值分析模型。
  • (2)分析了充填体–围岩组合体三轴应力应变曲线、强度和破坏模式。
  • (3)揭示了充填体–围岩组合体三轴破坏过程与声发射演化规律。
  • 分析充填体与围岩相互作用机理是地下矿山充填采场稳定性评价关键。以空场嗣后充填采场为物理原型,将充填体与围岩协同考虑,概化出了充填体-围岩组合体实验室尺度模型,基于RFPA3D构建了具有一个粗糙接触面、两种灰砂配比、四个接触面倾角和三种围压的充填体-围岩组合体三轴压缩试验数值分析模型,系统分析了组合体的三轴应力应变曲线、强度、破坏模式、破坏过程与声发射演化规律,并通过组合体静力学分析模型和文献对比方法验证了结果的可靠性。研究结果表明,充填体-围岩组合体在三轴压缩下的变形、强度特征和破坏模式与接触面倾角、围岩和灰砂配比有关联关系;应力-应变曲线可分为压实、弹性、屈服、应变软化和残余应力五个阶段,不同阶段的声发射特征变化明显;充填体-围岩组合体三轴抗压强度随围压的增加呈线性增加;当接触面倾角为45°和60°时,组合体破坏发生在接触面和充填体区域。当接触面倾角为75°和90°时,充填体、接触面和围岩区域均有破坏。研究结论可为地下充填采场的稳定性分析提供理论依据。
  • Research Article

    Numerical investigation of the mechanical behavior of the backfill–rock composite structure under triaxial compression

    + Author Affiliations
    • To ensure safe and economical backfill mining, the mechanical response of the backfill–rock interaction system needs to be understood. The numerical investigation of the mechanical behavior of backfill–rock composite structure (BRCS) under triaxial compression, which includes deformation, failure patterns, strength characteristics, and acoustic emission (AE) evolution, was proposed. The models used in the tests have one rough interface, two cement–iron tailings ratios (CTRs), four interface angles (IAs), and three confining pressures (CPs). Results showed that the deformation, strength characteristics, and failure patterns of BRCS under triaxial compression depend on IA, CP, and CTR. The stress–strain curves of BRCS under triaxial compression could be divided into five stages, namely, compaction, elasticity, yield, strain softening, and residual stress. The relevant AE counts have corresponding relationships with different stages. The triaxial compressive strengths of composites increase linearly with the increase of the CP. Furthermore, the CP stress strengthening effect occurs. When the IAs are 45° and 60°, the failure areas of composites appear in the interface and backfill. When the IAs are 75° and 90°, the failure areas of composites appear in the backfill, interface, and rock. Moreover, the corresponding failure modes yield the combined shear failure. The research results provide the basis for further understanding of the stability of the BRCS.
    • loading
    • Supplementary Information-s12613-022-2554-9.docx
    • [1]
      Y. Wang, Z.Q. Wang, A.X. Wu, L. Wang, Q. Na, C. Cao, and G.F. Yang, Experimental research and numerical simulation of the multi-field performance of cemented paste backfill: Review and future perspectives, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 193. doi: 10.1007/s12613-022-2537-x
      [2]
      G.L. Xue, E. Yilmaz, W.D. Song, and S. Cao, Mechanical, flexural and microstructural properties of cement–tailings matrix composites: Effects of fiber type and dosage, Composites Part B, 172(2019), p. 131. doi: 10.1016/j.compositesb.2019.05.039
      [3]
      E. Yilmaz, Stope depth effect on field behaviour and performance of cemented paste backfills, Int. J. Min. Reclam. Environ., 32(2018), No. 4, p. 273. doi: 10.1080/17480930.2017.1285858
      [4]
      T. Deschamps, M. Benzaazoua, and B. Bussière, Laboratory study of surface paste disposal for sulfidic tailings: Physical model testing, Miner. Eng., 24(2011), No. 8, p. 794. doi: 10.1016/j.mineng.2011.02.013
      [5]
      L. Li and P.Y. Yang, A numerical evaluation of continuous backfilling in cemented paste backfilled stope through an application of wick drains, Int. J. Min. Sci. Technol., 25(2015), No. 6, p. 897. doi: 10.1016/j.ijmst.2015.09.004
      [6]
      H.J. Lu, C.C. Qi, Q.S. Chen, D.Q. Gan, Z.L. Xue, and Y.J. Hu, A new procedure for recycling waste tailings as cemented paste backfill to underground stopes and open pits, J. Clean. Prod., 188(2018), p. 601. doi: 10.1016/j.jclepro.2018.04.041
      [7]
      C.C. Qi, Big data management in the mining industry, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 131. doi: 10.1007/s12613-019-1937-z
      [8]
      B.D. Thompson, W.F. Bawden, and M.W. Grabinsky, In situ measurements of cemented paste backfill at the Cayeli Mine, Can. Geotech. J., 49(2012), No. 7, p. 755. doi: 10.1139/t2012-040
      [9]
      T. Yılmaz, B. Ercikdi, and H. Deveci, Utilisation of construction and demolition waste as cemented paste backfill material for underground mine openings, J. Environ. Manage., 222(2018), p. 250. doi: 10.1016/j.jenvman.2018.05.075
      [10]
      I.L.S. Libos and L. Cui, Effects of curing time, cement content, and saturation state on mode-I fracture toughness of cemented paste backfill, Eng. Fract. Mech., 235(2020), art. No. 107174. doi: 10.1016/j.engfracmech.2020.107174
      [11]
      G.L. Xue and E. Yilmaz, Strength, acoustic, and fractal behavior of fiber reinforced cemented tailings backfill subjected to triaxial compression loads, Constr. Build. Mater., 338(2022), art. No. 127667. doi: 10.1016/j.conbuildmat.2022.127667
      [12]
      Z.Y. Zhao, S. Cao, and E. Yilmaz, Effect of layer thickness on the flexural property and microstructure of 3D-printed rhomboid polymer-reinforced cemented tailing composites, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 236. doi: 10.1007/s12613-022-2557-6
      [13]
      H.Q. Jiang, M. Fall, E. Yilmaz, Y.H. Li, and L. Yang, Effect of mineral admixtures on flow properties of fresh cemented paste backfill: Assessment of time dependency and thixotropy, Powder Technol., 372(2020), p. 258. doi: 10.1016/j.powtec.2020.06.009
      [14]
      E. Sadrossadat, H. Basarir, G.H. Luo, A. Karrech, R. Durham, A. Fourie, and M.Elchalakani, Multi-objective mixture design of cemented paste backfill using particle swarm optimisation algorithm, Miner. Eng., 153(2020), art. No. 106385. doi: 10.1016/j.mineng.2020.106385
      [15]
      N.F. Liu, L. Cui, and Y. Wang, Analytical assessment of internal stress in cemented paste backfill, Adv. Mater. Sci. Eng., 2020(2020), art. No. 6666548. doi: 10.1155/2020/6666548
      [16]
      M. Fall and M. Pokharel, Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills: Portland cement-paste backfill, Cem. Concr. Compos., 32(2010), No. 10, p. 819. doi: 10.1016/j.cemconcomp.2010.08.002
      [17]
      S. Cao, W.D. Song, and E. Yilmaz, Influence of structural factors on uniaxial compressive strength of cemented tailings backfill, Constr. Build. Mater., 174(2018), p. 190. doi: 10.1016/j.conbuildmat.2018.04.126
      [18]
      E. Yilmaz, T. Belem, and M. Benzaazoua, Specimen size effect on strength behavior of cemented paste backfills subjected to different placement conditions, Eng. Geol., 185(2015), p. 52. doi: 10.1016/j.enggeo.2014.11.015
      [19]
      Y.R. Wang, H.J. Lu, and J. Wu, Experimental investigation on strength and failure characteristics of cemented paste backfill–rock composite under uniaxial compression, Constr. Build. Mater., 304(2021), art. No. 124629. doi: 10.1016/j.conbuildmat.2021.124629
      [20]
      M.L. Walske, H. McWilliam, J. Doherty, and A.Fourie, Influence of curing temperature and stress conditions on mechanical properties of cementing paste backfill, Can. Geotech. J., 53(2016), No. 1, p. 148. doi: 10.1139/cgj-2014-0502
      [21]
      Z.M. Huang, Z.G. Ma, L. Zhang, P. Gong, Y.K. Zhang, and F. Liu, A numerical study of macro-mesoscopic mechanical properties of gangue backfill under biaxial compression, Int. J. Min. Sci. Technol., 26(2016), No. 2, p. 309. doi: 10.1016/j.ijmst.2015.12.018
      [22]
      D. Martogi and S. Abedi, Microscale approximation of the elastic mechanical properties of randomly oriented rock cuttings, Acta Geotech., 15(2020), No. 12, p. 3511. doi: 10.1007/s11440-020-01020-9
      [23]
      X.S. Li, Y.C. Li, and S.S. Wu, Experimental investigation into the influences of weathering on the mechanical properties of sedimentary rocks, Geofluids, 2020(2020), art. No. 8893299. doi: 10.1155/2020/8893299
      [24]
      S. Durmaz and D. Ülgen, Prediction of earthquake-induced permanent deformations for concrete-faced rockfill dams, Nat. Hazards, 105(2021), No. 1, p. 587. doi: 10.1007/s11069-020-04325-w
      [25]
      M. Bost, H. Mouzannar, F. Rojat, G. Coubard, and J.P. Rajot, Metric scale study of the bonded concrete-rock interface shear behaviour, KSCE J. Civ. Eng., 24(2020), No. 2, p. 390. doi: 10.1007/s12205-019-0824-5
      [26]
      V.N. Aptukov and S.V. Volegov, Modeling concentration of residual stresses and damages in salt rock cores, J. Min. Sci., 56(2020), No. 3, p. 331. doi: 10.1134/S1062739120036806
      [27]
      R.J. Clément, Z. Lun, and G.Ceder, Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes, Energy Environ. Sci., 13(2020), No. 2, p. 345. doi: 10.1039/C9EE02803J
      [28]
      Q. Ma, Y.L. Tan, X.S. Liu, Q.H. Gu, and X.B. Li, Effect of coal thicknesses on energy evolution characteristics of roof rock–coal–floor rock sandwich composite structure and its damage constitutive model, Composites Part B, 198(2020), art. No. 108086. doi: 10.1016/j.compositesb.2020.108086
      [29]
      Y.R. Yang, X.P. Lai, P.F. Shan, and F. Cui, Comprehensive analysis of dynamic instability characteristics of steeply inclined coal-rock mass, Arab. J. Geosci., 13(2020), No. 6, art. No. 241. doi: 10.1007/s12517-020-5217-z
      [30]
      K. Wang, F. Du, X. Zhang, L. Wang, and C.P. Xin, Mechanical properties and permeability evolution in gas-bearing coal-rock combination body under triaxial conditions, Environ. Earth Sci., 76(2017), No. 24, art. No. 815. doi: 10.1007/s12665-017-7162-z
      [31]
      N.J.F. Koupouli, T. Belem, P. Rivard, and H. Effenguet, Direct shear tests on cemented paste backfill–rock wall and cemented paste backfill–backfill interfaces, J. Rock Mech. Geotech. Eng., 8(2016), No. 4, p. 472. doi: 10.1016/j.jrmge.2016.02.001
      [32]
      Y. Zhang, Z.H. Zhang, L.J. Guo, and X.L. Du, Strength model of backfill–rock irregular interface based on fractal theory, Front. Mater., 8(2021), art. No. 792014. doi: 10.3389/fmats.2021.792014
      [33]
      Z.G. Xiu, S.H. Wang, Y.C. Ji, F.L. Wang, F.Y. Ren, and V.T. Nguyen, The effects of dry and wet rock surfaces on shear behavior of the interface between rock and cemented paste backfill, Powder Technol., 381(2021), p. 324. doi: 10.1016/j.powtec.2020.11.053
      [34]
      N. Falaknaz, M. Aubertin, and L. Li, Numerical investigation of the geomechanical response of adjacent backfilled stopes, Can. Geotech. J., 52(2015), No. 10, p. 1507. doi: 10.1139/cgj-2014-0056
      [35]
      W.B. Xu, Y. Cao, and B.H. Liu, Strength efficiency evaluation of cemented tailings backfill with different stratified structures, Eng. Struct., 180(2019), p. 18. doi: 10.1016/j.engstruct.2018.11.030
      [36]
      W.L. Wu, W.B. Xu, and J.P. Zuo, Effect of inclined interface angle on shear strength and deformation response of cemented paste backfill–rock under triaxial compression, Constr. Build. Mater., 279(2021), art. No. 122478. doi: 10.1016/j.conbuildmat.2021.122478
      [37]
      C.A. Tang, and P.K. Kaiser, Numerical simulation of cumulative damage and seismic energy release during brittle rock failure—Part I: Fundamentals, Int. J. Rock Mech. Min. Sci., 35(1998), No. 2, p. 113. doi: 10.1016/S0148-9062(97)00009-0
      [38]
      K. Ma, C.A. Tang, Z.Z. Liang, D.Y. Zhuang, and Q.B. Zhang, Stability analysis and reinforcement evaluation of high-steep rock slope by microseismic monitoring, Eng. Geol., 218(2017), p. 22. doi: 10.1016/j.enggeo.2016.12.020
      [39]
      S.Y. Wang, S.W. Sloan, M.L. Huang, and C.A. Tang, Numerical study of failure mechanism of serial and parallel rock Pillars, Rock Mech. Rock Eng., 44(2011), No. 2, p. 179. doi: 10.1007/s00603-010-0116-3
      [40]
      P. Liang and H.J. Lu, Mechanical behaviour and failure characteristics of cemented paste backfill under lateral unloading condition, Int. J. Min. Miner. Eng., 11(2020), No. 1, art. No. 66. doi: 10.1504/IJMME.2020.105882
      [41]
      Z.Z. Liang, H. Xing, S.Y. Wang, D.J. Williams, and C.A. Tang, A three-dimensional numerical investigation of the fracture of rock specimens containing a pre-existing surface flaw, Comput. Geotech., 45(2012), p. 19. doi: 10.1016/j.compgeo.2012.04.011
      [42]
      B.Q. Li and H.H. Einstein, Comparison of visual and acoustic emission observations in a four point bending experiment on barre granite, Rock Mech. Rock Eng., 50(2017), No. 9, p. 2277. doi: 10.1007/s00603-017-1233-z
      [43]
      C.A. Tang, H. Liu, P.K.K Lee, Y. Tsui, and L. Tham, Numerical studies of the influence of microstructure on rock failure in uniaxial compression—Part I: Effect of heterogeneity, Int. J. Rock Mech. Min. Sci., 37(2000), No. 4, p. 555. doi: 10.1016/S1365-1609(99)00121-5
      [44]
      W.C. Zhu and C.A. Tang, Micromechanical model for simulating the fracture process of rock, Rock Mech. Rock Eng., 37(2004), No. 1, p. 25. doi: 10.1007/s00603-003-0014-z
      [45]
      G. Li and C.A. Tang, A statistical meso-damage mechanical method for modeling trans-scale progressive failure process of rock, Int. J. Rock Mech. Min. Sci., 74(2015), p. 133. doi: 10.1016/j.ijrmms.2014.12.006
      [46]
      X.M. Wei, L.J. Guo, X.L. Zhou, C.H. Li, and L.X. Zhang, Full sequence stress evolution law and prediction model of high stage cemented backfill, Rock Soil Mech., 41(2020), No. 11, p. 3613. doi: 10.16285/j.rsm.2020.0585

    Catalog


    • /

      返回文章
      返回