留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 4
Apr.  2023

图(13)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  548
  • HTML全文浏览量:  166
  • PDF下载量:  35
  • 被引次数: 0
Lipeng Deng, Pengliang Niu, Liming Ke, Jinhe Liu, and Jidong Kang, Repairing of exit-hole in friction-stir-spot welded joints for 2024-T4 aluminum alloy by resistance welding, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 660-669. https://doi.org/10.1007/s12613-022-2561-x
Cite this article as:
Lipeng Deng, Pengliang Niu, Liming Ke, Jinhe Liu, and Jidong Kang, Repairing of exit-hole in friction-stir-spot welded joints for 2024-T4 aluminum alloy by resistance welding, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 660-669. https://doi.org/10.1007/s12613-022-2561-x
引用本文 PDF XML SpringerLink
研究论文

基于电阻焊技术的2024-T4铝合金搅拌摩擦点焊匙孔修复

  • 通讯作者:

    邓黎鹏    E-mail: denglipeng@nchu.edu.cn

文章亮点

  • (1) 系统地研究了采用电阻焊方法修复2024-T4铝合金搅拌摩擦点焊匙孔的技术。
  • (2) 深入研究了塞棒与匙孔间界面消除过程及机理。
  • (3) 详细分析了填补后接头各区域的微观结构及组织。
  • 搅拌摩擦(点)焊匙孔在一定程度上影响利用焊缝(点)的力学性能及抗腐蚀性能,因此,研究匙孔填补技术是搅拌摩擦焊领域的一个重要分支。本文以三项次级整流电阻点焊为填补设备,以1.5 mm厚的2024-T4铝合金搅拌摩擦点焊匙孔为填补对象,系统研究了基于电阻焊原理的匙孔填补技术。设计并自制了填补过程动态压力监测装置,并藉此深入分析了塞棒与匙孔间界面消除过程。采用光学显微镜、电子背散射衍射、电子扫描等分析手段,详细分析了填补后接头各区域的微观结构及组织、断口形貌、力学性能等。研究结果表明:采用电阻焊技术填补匙孔的过程可分为三个阶段,塞棒压入并排出空气阶段、塞棒稳定导电阶段及塞棒与匙孔壁冶金结合阶段。其中,塞棒与匙孔壁间的冶金结合形式分为熔化连接和扩散连接,前者发生在填补后接头中部区域,后者发生在上部和下部区域。基于本文实验材料,填补后接头拉剪载荷为7.43 kN,比填补前提高了36.3%.
  • Research Article

    Repairing of exit-hole in friction-stir-spot welded joints for 2024-T4 aluminum alloy by resistance welding

    + Author Affiliations
    • The exit-hole in friction stir spot welded (FSSWed) 2024-T4 aluminum alloy joints was successfully repaired by using a three-phase secondary rectification resistance spot welding machine, which is termed as filling exit-hole based on resistance welding (FEBRW). The filling dynamic behavior of force was recorded by a device monitoring. Optical microscope (OM), electron backscatter diffraction (EBSD), and tensile shear tests and finite element modelling were conducted to investigate the repairing stages and bonding mechanisms of the repaired joints in detail. Results showed that exit-hole was completely filled and repaired experiencing three stages. Metallurgical bonding was achieved between plug and exit-hole wall in two forms, including melting bonding in the middle of the joints and partial diffusion bonding on both the upper and bottom of the joints. The highest tensile shear strength of the repaired joints was 7.43 kN, which was 36.3% higher than that of the as welded joints. Resistance welding paves an efficient way to repair the exit-hole in FSSWed joints.
    • loading
    • [1]
      C.R. Hutchinson, F. de Geuser, Y. Chen, and A. Deschamps, Quantitative measurements of dynamic precipitation during fatigue of an Al–Zn–Mg–(Cu) alloy using small-angle X-ray scattering, Acta Mater., 74(2014), p. 96. doi: 10.1016/j.actamat.2014.04.027
      [2]
      P.L. Niu, W.Y. Li, and D.L. Chen, Tensile and cyclic deformation response of friction-stir-welded dissimilar aluminum alloy joints: Strain localization effect, J. Mater. Sci. Technol., 73(2021), p. 91. doi: 10.1016/j.jmst.2020.07.045
      [3]
      G.H. Li, L. Zhou, W.L. Zhou, X.G. Song, and Y.X. Huang, Influence of dwell time on microstructure evolution and mechanical properties of dissimilar friction stir spot welded aluminum–copper metals, J. Mater. Res. Technol., 8(2019), No. 3, p. 2613. doi: 10.1016/j.jmrt.2019.02.015
      [4]
      X.D. Xu, X.Q. Yang, G. Zhou, and J.H. Tong, Microstructures and fatigue properties of friction stir lap welds in aluminum alloy AA6061-T6, Mater. Des., 35(2012), p. 175. doi: 10.1016/j.matdes.2011.09.064
      [5]
      W.Y. Li, J.F. Li, Z.H. Zhang, D.L. Gao, W.B. Wang, and C.L. Dong, Improving mechanical properties of pinless friction stir spot welded joints by eliminating hook defect, Mater. Des., 62(2014), p. 247.
      [6]
      Q. Chu, W.Y. Li, X.W. Yang, et al., Microstructure and mechanical optimization of probeless friction stir spot welded joint of an Al–Li alloy, J. Mater. Sci. Technol., 34(2018), No. 10, p. 1739. doi: 10.1016/j.jmst.2018.03.009
      [7]
      M.D. Tier, T.S. Rosendo, J.F. dos Santos, et al., The influence of refill FSSW parameters on the microstructure and shear strength of 5042 aluminium welds, J. Mater. Process. Technol., 213(2013), No. 6, p. 997. doi: 10.1016/j.jmatprotec.2012.12.009
      [8]
      Z. Shen, Y. Ding, J. Chen, et al., Interfacial bonding mechanism in Al/coated steel dissimilar refill friction stir spot welds, J. Mater. Sci. Technol., 35(2019), No. 6, p. 1027. doi: 10.1016/j.jmst.2019.01.001
      [9]
      Z.K. Shen, Y.Q. Ding, and A.P. Gerlich, Advances in friction stir spot welding, Crit. Rev. Solid State Mater. Sci., 45(2020), No. 6, p. 457. doi: 10.1080/10408436.2019.1671799
      [10]
      W.Y. Li, Q. Chu, X.W. Yang, J.J. Shen, A. Vairis, and W.B. Wang, Microstructure and morphology evolution of probeless friction stir spot welded joints of aluminum alloy, J. Mater. Process. Technol., 252(2018), p. 69. doi: 10.1016/j.jmatprotec.2017.09.003
      [11]
      Q. Chu, X.W. Yang, W.Y. Li, et al., On visualizing material flow and precipitate evolution during probeless friction stir spot welding of an Al–Li alloy, Mater. Charact., 144(2018), p. 336. doi: 10.1016/j.matchar.2018.07.026
      [12]
      C.C. de Castro, J.J. Shen, A.H. Plaine, et al., Tool wear mechanisms and effects on refill friction stir spot welding of AA2198-T8 sheets, J. Mater. Res. Technol., 20(2022), p. 857. doi: 10.1016/j.jmrt.2022.07.092
      [13]
      Y.F. Zou, W.Y. Li, X.W. Yang, et al., Characterizations of dissimilar refill friction stir spot welding 2219 aluminum alloy joints of unequal thickness, J. Manuf. Process., 79(2022), p. 91. doi: 10.1016/j.jmapro.2022.04.062
      [14]
      H.Y. Zhou and K.P. Mehta, Effect of materials positioning on dissimilar modified friction stir clinching between aluminum 5754-O and 2024-T3 sheets, Vacuum, 178(2020), art. No. 109445. doi: 10.1016/j.vacuum.2020.109445
      [15]
      B. Han, Y.X. Huang, S.X. Lv, L. Wan, J.C. Feng, and G.S. Fu, AA7075 bit for repairing AA2219 keyhole by filling friction stir welding, Mater. Des., 51(2013), p. 25. doi: 10.1016/j.matdes.2013.03.089
      [16]
      M. Paidar, O.O. Ojo, A. Moghanian, A.S. Karapuzha, and A. Heidarzadeh, Modified friction stir clinching with protuberance-keyhole levelling: A process for production of welds with high strength, J. Manuf. Process., 41(2019), p. 177. doi: 10.1016/j.jmapro.2019.03.030
      [17]
      M. Sajed, Parametric study of two-stage refilled friction stir spot welding, J. Manuf. Process., 24(2016), p. 307. doi: 10.1016/j.jmapro.2016.09.011
      [18]
      K.P. Mehta, R. Patel, H. Vyas, S. Memon, and P. Vilaça, Repairing of exit-hole in dissimilar Al–Mg friction stir welding: Process and microstructural pattern, Manuf. Lett., 23(2020), p. 67. doi: 10.1016/j.mfglet.2020.01.002
      [19]
      K. Mehta, A. Astarita, P. Carlone, et al., Investigation of exit-hole repairing on dissimilar aluminum–copper friction stir welded joints, J. Mater. Res. Technol., 13(2021), p. 2180. doi: 10.1016/j.jmrt.2021.06.019
      [20]
      D.F. Metz, E.R. Weishaupt, M.E. Barkey, and B.S. Fairbee, A microstructure and microhardness characterization of a friction plug weld in friction stir welded 2195 Al–Li, J. Eng. Mater. Technol., 134(2012), No. 2, art. No. 021005. doi: 10.1115/1.4006066
      [21]
      D.F. Metz and M.E. Barkey, Fatigue behavior of friction plug welds in 2195 Al–Li alloy, Int. J. Fatigue, 43(2012), p. 178. doi: 10.1016/j.ijfatigue.2012.04.002
      [22]
      B. Du, Z.P. Sun, X.Q. Yang, L. Cui, J.L. Song, and Z.P. Zhang, Characteristics of friction plug welding to 10 mm thick AA2219-T87 sheet: Weld formation, microstructure and mechanical property, Mater. Sci. Eng. A, 654(2016), p. 21. doi: 10.1016/j.msea.2015.12.019
      [23]
      G.Q. Wang, G. Zhao, Y.F. Hao, X.F. Chen, and Y.H. Zhao, Technique for repairing keyhole defect for FSW joint of 2219 aluminium alloy, Aerosp. Mater. Technol., 42(2012), No. 3, p. 24.
      [24]
      L.P. Deng, S.H. Li, L.M. Ke, J.H. Liu, and J.D. Kang, Microstructure and fracture behavior of refill friction stir spot welded joints of AA2024 using a novel refill technique, Metals, 9(2019), No. 3, art. No. 286. doi: 10.3390/met9030286
      [25]
      T. Rosendo, B. Parra, M.A.D. Tier, et al., Mechanical and microstructural investigation of friction spot welded AA6181-T4 aluminium alloy, Mater. Des., 32(2011), No. 3, p. 1094. doi: 10.1016/j.matdes.2010.11.017
      [26]
      Z.K. Shen, X.Q. Yang, S. Yang, Z.H. Zhang, and Y.H. Yin, Microstructure and mechanical properties of friction spot welded 6061-T4 aluminum alloy, Mater. Des., 54(2014), p. 766. doi: 10.1016/j.matdes.2013.08.021
      [27]
      P. Zhang, C. Chen, C.W. Zhang, et al., Novel technique of friction extrusion self-refilling for repairing keyhole of flat clinched joint, Int. J. Mech. Sci., 233(2022), art. No. 107658. doi: 10.1016/j.ijmecsci.2022.107658
      [28]
      Y. Tozaki, Y. Uematsu, and K. Tokaji, A newly developed tool without probe for friction stir spot welding and its performance, J. Mater. Process. Technol., 210(2010), No. 6-7, p. 844. doi: 10.1016/j.jmatprotec.2010.01.015
      [29]
      O.O. Oladimeji, E. Taban, and E. Kaluc, Understanding the role of welding parameters and tool profile on the morphology and properties of expelled flash of spot welds, Mater. Des., 108(2016), p. 518. doi: 10.1016/j.matdes.2016.07.013
      [30]
      Q. Chu, W.Y. Li, H.L. Hou, et al., On the double-side probeless friction stir spot welding of AA2198 Al–Li alloy, J. Mater. Sci. Technol., 35(2019), No. 5, p. 784. doi: 10.1016/j.jmst.2018.10.027
      [31]
      T.P. Saju and R.G. Narayanan, Dieless friction stir extrusion joining of aluminum alloy sheets with a pinless stir tool by controlling tool plunge depth, J. Mater. Process. Technol., 276(2020), art. No. 116416. doi: 10.1016/j.jmatprotec.2019.116416

    Catalog


    • /

      返回文章
      返回