Cite this article as: |
Qiuyi Wang, Jie Liu, Yadong Li, Zhichao Lou, and Yanjun Li, A literature review of MOF derivatives of electromagnetic wave absorbers mainly based on pyrolysis, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 446-473. https://doi.org/10.1007/s12613-022-2562-9 |
娄志超 E-mail: zc-lou2015@njfu.edu.cn
李延军 E-mail: nfcm2018@163.com
[1] |
H. Lv, Z. Yang, S.J.H. Ong, et al., A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility, Adv. Funct. Mater., 29(2019), No. 14, art. No. 1900163. doi: 10.1002/adfm.201900163
|
[2] |
H. Lv, Z. Yang, P.L. Wang, et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device, Adv. Mater., 30(2018), No. 15, art. No. 1706343. doi: 10.1002/adma.201706343
|
[3] |
Z. Lou, Q. Wang, U.I. Kara, et al., Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers, Nano-Micro Lett., 14(2021), No. 1, art. No. 11. doi: 10.1007/s40820-021-00750-z
|
[4] |
B. Yang, J. Fang, C. Xu, et al., One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption, Nano-Micro Lett., 14(2022), No. 1, art. No. 170. doi: 10.1007/s40820-022-00920-7
|
[5] |
M.S. Cao, X.X. Wang, M. Zhang, W.Q. Cao, X.Y. Fang, and J. Yuan, Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy, Adv. Mater., 32(2020), No. 10, art. No. 1907156. doi: 10.1002/adma.201907156
|
[6] |
K. Li, S. Jin, Y. Zhou, et al., Bioinspired dual-crosslinking strategy for fabricating soy protein-based adhesives with excellent mechanical strength and antibacterial activity, Composites Part B, 240(2022), art. No. 109987. doi: 10.1016/j.compositesb.2022.109987
|
[7] |
Z. Xiang, Y. Shi, X. Zhu, L. Cai, and W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion, Nano-Micro Lett., 13(2021), No. 1, art. No. 150. doi: 10.1007/s40820-021-00673-9
|
[8] |
Z. Ling, J. Zhao, Y. Xie, et al., Facile nanofibrillation of strong bamboo holocellulose via mild acid-assisted DES treatment, Ind. Crops Prod., 187(2022), art. No. 115485. doi: 10.1016/j.indcrop.2022.115485
|
[9] |
P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You and R.C. Che, Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption, Adv. Funct. Mater., 31(2021), No. 27, art. No. 2102812. doi: 10.1002/adfm.202102812
|
[10] |
X. Li, W. You, C. Xu, et al., 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization, Nano-Micro Lett., 13(2021), No. 1, art. No. 157. doi: 10.1007/s40820-021-00680-w
|
[11] |
K. Li, S.C. Jin, S.C. Jiang, et al., Bioinspired mineral-organic strategy for fabricating a high-strength, antibacterial, flame-retardant soy protein bioplastic via internal boron-nitrogen coordination, Chem. Eng. J., 428(2022), art. No. 132616. doi: 10.1016/j.cej.2021.132616
|
[12] |
Z. Ling, J. Chen, X.Y. Wang, et al., Nature-inspired construction of iridescent CNC/Nano-lignin films for UV resistance and ultra-fast humidity response, Carbohydr. Polym., 296(2022), art. No. 119920. doi: 10.1016/j.carbpol.2022.119920
|
[13] |
Z.L. Zhang, L. Zhang, X.Q. Chen, et al., Broadband metamaterial absorber for low-frequency microwave absorption in the S-band and C-band, J. Magn. Magn. Mater., 497(2020), art. No. 166075. doi: 10.1016/j.jmmm.2019.166075
|
[14] |
Z.C. Lou, Q.Y. Wang, X.D. Zhou, et al., An angle-insensitive electromagnetic absorber enabling a wideband absorption, J. Mater. Sci. Technol., 113(2022), p. 33. doi: 10.1016/j.jmst.2021.11.007
|
[15] |
X. Li, Y.F. Zhu, X.Q. Liu, B.B. Xu, and Q.Q. Ni, A broadband and tunable microwave absorption technology enabled by VGCFs/PDMS-EP shape memory composites, Compos. Struct., 238(2020), art. No. 111954. doi: 10.1016/j.compstruct.2020.111954
|
[16] |
Q. Liu, Q. Cao, H. Bi, et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption, Adv. Mater., 28(2016), No. 3, p. 486. doi: 10.1002/adma.201503149
|
[17] |
T. Liu, Y. Pang, M. Zhu, and S. Kobayashi, Microporous Co@CoO nanoparticles with superior microwave absorption properties, Nanoscale, 6(2014), No. 4, p. 2447. doi: 10.1039/c3nr05238a
|
[18] |
Z.C. Lou, Q.Y. Wang, W. Sun, et al., Regulating lignin content to obtain excellent bamboo-derived electromagnetic wave absorber with thermal stability, Chem. Eng. J., 430(2022), art. No. 133178. doi: 10.1016/j.cej.2021.133178
|
[19] |
Z.C. Lou, X. Han, J. Liu, et al., Nano-Fe3O4/bamboo bundles/phenolic resin oriented recombination ternary composite with enhanced multiple functions, Composites Part B, 226(2021), art. No. 109335. doi: 10.1016/j.compositesb.2021.109335
|
[20] |
R.X. Deng, B.B. Chen, H.G. Li, et al., MXene/Co3O4 composite material: Stable synthesis and its enhanced broadband microwave absorption, Appl. Surf. Sci., 488(2019), p. 921. doi: 10.1016/j.apsusc.2019.05.058
|
[21] |
Z.C. Lou, Q.Y. Wang, Y. Zhang, et al., In-situ formation of low-dimensional, magnetic core–shell nanocrystal for electromagnetic dissipation, Composites Part B, 214(2021), art. No. 108744. doi: 10.1016/j.compositesb.2021.108744
|
[22] |
Z.C. Lou, T.C. Yuan, Q.Y. Wang, et al., Fabrication of crack-free flattened bamboo and its macro-/micro-morphological and mechanical properties, J. Renew. Mater., 9(2021), No. 5, p. 959. doi: 10.32604/jrm.2021.014285
|
[23] |
Z.J. Yang, Y. Zhang and B.Y. Wen, Enhanced electromagnetic interference shielding capability in bamboo fiber@polyaniline composites through microwave reflection cavity design, Compos. Sci. Technol., 178(2019), p. 41. doi: 10.1016/j.compscitech.2019.04.023
|
[24] |
J. Yan, Y. Huang, X.D. Liu, et al., Polypyrrole-based composite materials for electromagnetic wave absorption, Polym. Rev., 61(2021), No. 3, p. 646. doi: 10.1080/15583724.2020.1870490
|
[25] |
C.P. Mu, J.F. Song, B.C. Wang, et al., Two-dimensional materials and one-dimensional carbon nanotube composites for microwave absorption, Nanotechnology, 29(2018), No. 2, art. No. 025704. doi: 10.1088/1361-6528/aa9a2a
|
[26] |
H.L. Lv, Y. Li, Z.R. Jia, et al., Exceptionally porous three-dimensional architectural nanostructure derived from CNTs/graphene aerogel towards the ultra-wideband EM absorption, Composites Part B, 196(2020), art. No. 108122. doi: 10.1016/j.compositesb.2020.108122
|
[27] |
F. Sultanov, C. Daulbayev, B. Bakbolat, and O. Daulbayev, Advances of 3D graphene and its composites in the field of microwave absorption, Adv. Colloid Interface Sci., 285(2020), art. No. 102281. doi: 10.1016/j.cis.2020.102281
|
[28] |
X. Li, W.B. You, L. Wang, et al., Self-assembly-magnetized MXene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property, ACS Appl. Mater. Interfaces, 11(2019), No. 47, p. 44536. doi: 10.1021/acsami.9b11861
|
[29] |
M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao, and J. Yuan, 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding, Chem. Eng. J., 359(2019), p. 1265. doi: 10.1016/j.cej.2018.11.051
|
[30] |
H.F. Pang, Y.P. Duan, L.X. Huang, et al., Research advances in composition, structure and mechanisms of microwave absorbing materials, Composites Part B, 224(2021), art. No. 109173. doi: 10.1016/j.compositesb.2021.109173
|
[31] |
F. Qin and C. Brosseau, Comment on “The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material”, Appl. Phys. Lett., 98(2011), art. No. 072906. doi: 10.1063/1.3555436
|
[32] |
Z.T. Zhu, X. Sun, H.R. Xue, et al., Graphene-carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties, J. Mater. Chem. C, 2(2014), No. 32, p. 6582. doi: 10.1039/C4TC00757C
|
[33] |
H.T. Guan, Q.Y. Wang, X.F. Wu, et al., Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials, Composites Part B, 207(2021), art. No. 108562. doi: 10.1016/j.compositesb.2020.108562
|
[34] |
R.G. Liu, Y.X. Li, C.H. Li, et al., High performance microwave absorption through multi-scale metacomposite by intergrating Ni@C nanocapsules with millimetric polystyrene sphere, J. Phys. D: Appl. Phys., 51(2018), No. 36, art. No. 365303. doi: 10.1088/1361-6463/aad4f0
|
[35] |
J.Q. Wang, Q. Li, J.Q. Ren, A.B. Zhang, Q.Y. Zhang, and B.L. Zhang, Synthesis of bowknot-like N-doped Co@C magnetic nanoparticles constituted by acicular structural units for excellent microwave absorption, Carbon, 181(2021), p. 28. doi: 10.1016/j.carbon.2021.05.028
|
[36] |
Y.H. Chen, Z.H. Huang, M.M. Lu, et al., 3D Fe3O4 nanocrystals decorating carbon nanotubes to tune electromagnetic properties and enhance microwave absorption capacity, J. Mater. Chem. A, 3(2015), No. 24, p. 12621. doi: 10.1039/C5TA02782A
|
[37] |
Y.P. Wang, Z. Peng, Y.C. Jiao, and W. Jiang, Synthesis of Fe3O4@ZnO/RGO nanocomposites and microwave absorption properties, [in] 2015 IEEE 15th International Conference on Nanotechnology, Rome, 2015, p. 220.
|
[38] |
L. Wang, Y. Huang, X. Sun, et al., Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures, Nanoscale, 6(2014), No. 6, p. 3157. doi: 10.1039/C3NR05313J
|
[39] |
Z.C. Lou, R. Li, P. Wang, et al., Phenolic foam-derived magnetic carbon foams (MCFs) with tunable electromagnetic wave absorption behavior, Chem. Eng. J., 391(2020), art. No. 123571. doi: 10.1016/j.cej.2019.123571
|
[40] |
S.S. Kim, S.T. Kim, Y.C. Yoon, and K.S. Lee, Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies, J. Appl. Phys., 97(2005), No. 10, art. No. 10F905. doi: 10.1063/1.1852371
|
[41] |
Z. Ling, J.M. Ma, S. Zhang, L.P. Shao, C. Wang, and J.F. Ma, Stretchable and fatigue resistant hydrogels constructed by natural galactomannan for flexible sensing application, Int. J. Biol. Macromol., 216(2022), p. 193. doi: 10.1016/j.ijbiomac.2022.06.185
|
[42] |
Y. Zhang, Y. Huang, T.F. Zhang, et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam, Adv. Mater., 27(2015), No. 12, p. 2049. doi: 10.1002/adma.201405788
|
[43] |
H.Q. Zhao, Y. Cheng, W. Liu, et al., Biomass-derived porous carbon-based nanostructures for microwave absorption, Nano-Micro Lett., 11(2019), No. 1, art. No. 24. doi: 10.1007/s40820-019-0255-3
|
[44] |
O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, and J. Kim, Reticular synthesis and the design of new materials, Nature, 423(2003), No. 6941, p. 705. doi: 10.1038/nature01650
|
[45] |
H. Furukawa, K.E. Cordova, M. O’Keeffe, and O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341(2013), No. 6149, art. No. 1230444. doi: 10.1126/science.1230444
|
[46] |
X.D. Zhou, H. Han, Y.C. Wang, H.L. Lv and Z.C. Lou, Silicon-coated fibrous network of carbon nanotube/iron towards stable and wideband electromagnetic wave absorption, J. Mater. Sci. Technol., 121(2022), p. 199. doi: 10.1016/j.jmst.2022.03.002
|
[47] |
D. Saha and S. Deng, Ammonia adsorption and its effects on framework stability of MOF-5 and MOF-177, J. Colloid Interface Sci., 348(2010), No. 2, p. 615. doi: 10.1016/j.jcis.2010.04.078
|
[48] |
O. Kadioglu and S. Keskin, Efficient separation of helium from methane using MOF membranes, Sep. Purif. Technol., 191(2018), p. 192. doi: 10.1016/j.seppur.2017.09.031
|
[49] |
S.L. Qiu, M. Xue and G.S. Zhu, Metal-organic framework membranes: From synthesis to separation application, Chem. Soc. Rev., 43(2014), No. 16, p. 6116. doi: 10.1039/C4CS00159A
|
[50] |
Z.C. Hu, B.J. Deibert, and J. Li, Luminescent metal-organic frameworks for chemical sensing and explosive detection, Chem. Soc. Rev., 43(2014), No. 16, p. 5815. doi: 10.1039/C4CS00010B
|
[51] |
W.P. Lustig, S. Mukherjee, N.D. Rudd, A.V. Desai, J. Li, and S.K. Ghosh, Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications, Chem. Soc. Rev., 46(2017), No. 11, p. 3242. doi: 10.1039/C6CS00930A
|
[52] |
A.R. Millward and O.M. Yaghi, Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature, J. Am. Chem. Soc., 127(2005), No. 51, p. 17998. doi: 10.1021/ja0570032
|
[53] |
M. Eddaoudi, J. Kim, N. Rosi, et al., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science, 295(2002), No. 5554, p. 469. doi: 10.1126/science.1067208
|
[54] |
H.K. Chae, D.Y. Siberio-Pérez, J. Kim, et al., A route to high surface area, porosity and inclusion of large molecules in crystals, Nature, 427(2004), No. 6974, p. 523. doi: 10.1038/nature02311
|
[55] |
J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, and J.T. Hupp, Metal-organic framework materials as catalysts, Chem. Soc. Rev., 38(2009), No. 5, p. 1450. doi: 10.1039/b807080f
|
[56] |
G. Férey, C. Mellot-Draznieks, C. Serre, et al., A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science, 309(2005), No. 5743, p. 2040. doi: 10.1126/science.1116275
|
[57] |
L.S. Xie, G. Skorupskii, and M. Dincă, Electrically conductive metal-organic frameworks, Chem. Rev., 120(2020), No. 16, p. 8536. doi: 10.1021/acs.chemrev.9b00766
|
[58] |
Y.J. Cui, B. Li, H.J. He, W. Zhou, B.L. Chen and G.D. Qian, Metal-organic frameworks as platforms for functional materials, Acc. Chem. Res., 49(2016), No. 3, p. 483. doi: 10.1021/acs.accounts.5b00530
|
[59] |
R.R. Salunkhe, Y.V. Kaneti, and Y. Yamauchi, Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: Progress and prospects, ACS Nano, 11(2017), No. 6, p. 5293. doi: 10.1021/acsnano.7b02796
|
[60] |
F. Pan, Z.C. Liu, B.W. Deng, et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance, Nano-Micro Lett., 13(2021), No. 1, art. No. 43. doi: 10.1007/s40820-020-00568-1
|
[61] |
H.C. Wang, L. Xiang, W. Wei, J. An, J. He, C.H. Gong, and Y.L. Hou, Efficient and lightweight electromagnetic wave absorber derived from metal organic framework-encapsulated cobalt nanoparticles, ACS Appl. Mater. Interfaces, 9(2017), No. 48, p. 42012. doi: 10.1021/acsami.7b13796
|
[62] |
H.Q. Zhao, Y. Cheng, H.L. Lv, B.S. Zhang, G.B. Ji and Y.W. Du, Achieving sustainable ultralight electromagnetic absorber from flour by turning surface morphology of nanoporous carbon, ACS Sustainable Chem. Eng., 6(2018), No. 11, p. 15850. doi: 10.1021/acssuschemeng.8b04461
|
[63] |
X.F. Zhang, X.L. Dong, H. Huang, et al., Microwave absorption properties of the carbon-coated nickel nanocapsules, Appl. Phys. Lett., 89(2006), No. 5, art. No. 053115. doi: 10.1063/1.2236965
|
[64] |
F. Qin and C. Brosseau, A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles, J. Appl. Phys., 111(2012), No. 6, art. No. 061301. doi: 10.1063/1.3688435
|
[65] |
K. Li, S. Jin, X. Li, S.Q. Shi, and J. Li, A green bio-inspired chelating design for improving the electrical conductivity of flexible biopolymer-based composites, J. Clean. Prod., 285(2021), art. No. 125504. doi: 10.1016/j.jclepro.2020.125504
|
[66] |
J.R. Ma, X.X. Wang, W.Q. Cao, et al., A facile fabrication and highly tunable microwave absorption of 3D flower-like Co3O4-rGO hybrid-architectures, Chem. Eng. J., 339(2018), p. 487. doi: 10.1016/j.cej.2018.01.152
|
[67] |
J. Frenkel and J. Doefman, Spontaneous and induced magnetisation in ferromagnetic bodies, Nature, 126(1930), No. 3173, p. 274. doi: 10.1038/126274a0
|
[68] |
R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, and X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes, Adv. Mater., 16(2004), No. 5, p. 401. doi: 10.1002/adma.200306460
|
[69] |
T.J. Lewis, Interfaces: Nanometric dielectrics, J. Phys. D: Appl. Phys., 38(2005), No. 2, p. 202. doi: 10.1088/0022-3727/38/2/004
|
[70] |
Y. Sun, B. Zhou, H.P. Wang, et al., Boosting dual-interfacial polarization by decorating hydrophobic graphene with high-crystalline core–shell FeCo@Fe3O4 nanoparticle for improved microwave absorption, Carbon, 186(2022), p. 333. doi: 10.1016/j.carbon.2021.10.053
|
[71] |
M. Zhang, M.S. Cao, J.C. Shu, W.Q. Cao, L. Li, and J. Yuan, Electromagnetic absorber converting radiation for multifunction, Mater. Sci. Eng. R, 145(2021), art. No. 100627. doi: 10.1016/j.mser.2021.100627
|
[72] |
R.B. Hilborn, Maxwell–Wagner polarization in sintered compacts of ferric oxide, J. Appl. Phys., 36(1965), No. 5, p. 1553. doi: 10.1063/1.1703085
|
[73] |
X.L. Dong, X.F. Zhang, H. Huang, and F. Zuo, Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations, Appl. Phys. Lett., 92(2008), No. 1, art. No. 013127. doi: 10.1063/1.2830995
|
[74] |
K. Schulten and P.G. Wolynes, Semiclassical description of electron spin motion in radicals including the effect of electron hopping, J. Chem. Phys., 68(1978), No. 7, p. 3292. doi: 10.1063/1.436135
|
[75] |
L. Wang, X. Li, X.F. Shi, et al., Recent progress of microwave absorption microspheres by magnetic–dielectric synergy, Nanoscale, 13(2021), No. 4, p. 2136. doi: 10.1039/D0NR06267G
|
[76] |
X.G. Liu, D.Y. Geng, H. Meng, P.J. Shang, and Z.D. Zhang, Microwave-absorption properties of ZnO-coated iron nanocapsules, Appl. Phys. Lett., 92(2008), No. 17, art. No. 173117. doi: 10.1063/1.2919098
|
[77] |
Y.Z. Jiao, F. Wu, A. Xie, et al., Electrically conductive conjugate microporous polymers (CMPs) via confined polymerization of pyrrole for electromagnetic wave absorption, Chem. Eng. J., 398(2020), art. No. 125591. doi: 10.1016/j.cej.2020.125591
|
[78] |
Y.F. Pan, G.S. Wang, L. Liu, L. Guo, and S.H. Yu, Binary synergistic enhancement of dielectric and microwave absorption properties: A composite of arm symmetrical PbS dendrites and polyvinylidene fluoride, Nano Res., 10(2017), No. 1, p. 284. doi: 10.1007/s12274-016-1290-8
|
[79] |
G. Fang, C. Liu, Y. Yang, et al., Regulating percolation threshold via dual conductive phases for high-efficiency microwave absorption performance in C and X bands, ACS Appl. Mater. Interfaces, 13(2021), No. 31, p. 37517. doi: 10.1021/acsami.1c10110
|
[80] |
J.L. Liu, H.S. Liang, and H.J. Wu, Hierarchical flower-like Fe3O4/MoS2 composites for selective broadband electromagnetic wave absorption performance, Compos. A Appl. Sci. Manuf., 130(2020), art. No. 105760. doi: 10.1016/j.compositesa.2019.105760
|
[81] |
C. Kittel, On the theory of ferromagnetic resonance absorption, Phys. Rev., 73(1948), No. 2, p. 155. doi: 10.1103/PhysRev.73.155
|
[82] |
G.X. Tong, Y. Liu, T.T. Cui, Y.N. Li, Y.T. Zhao and J.G. Guan, Tunable dielectric properties and excellent microwave absorbing properties of elliptical Fe3O4 nanorings, Appl. Phys. Lett., 108(2016), No. 7, art. No. 072905. doi: 10.1063/1.4942095
|
[83] |
Y.P. Shi, M.M. Zhang, X.F. Zhang, et al., Achieving excellent metallic magnet-based absorbents by regulating the eddy current effect, J. Appl. Phys., 126(2019), No. 10, art. No. 105109. doi: 10.1063/1.5109538
|
[84] |
T. Wang, R. Han, G.G. Tan, J.Q. Wei, L. Qiao and F.S. Li, Reflection loss mechanism of single layer absorber for flake-shaped carbonyl-iron particle composite, J. Appl. Phys., 112(2012), No. 10, art. No. 104903. doi: 10.1063/1.4767365
|
[85] |
Y. Huang, J.D. Ji, Y. Chen, et al., Broadband microwave absorption of Fe3O4BaTiO3 composites enhanced by interfacial polarization and impedance matching, Composites Part B, 163(2019), p. 598. doi: 10.1016/j.compositesb.2019.01.008
|
[86] |
F. Qin and H.X. Peng, Ferromagnetic microwires enabled multifunctional composite materials, Prog. Mater. Sci., 58(2013), No. 2, p. 183. doi: 10.1016/j.pmatsci.2012.06.001
|
[87] |
P.A. Yang, Y.X. Huang, R. Li, et al., Optimization of Fe@Ag core–shell nanowires with improved impedance matching and microwave absorption properties, Chem. Eng. J., 430(2022), art. No. 132878. doi: 10.1016/j.cej.2021.132878
|
[88] |
S. Bao, W. Tang, Z.J Song, Q.R. Jiang, Z.Y. Jiang, and Z.X. Xie, Synthesis of sandwich-like Co15Fe85@C/RGO multicomponent composites with tunable electromagnetic parameters and microwave absorption performance, Nanoscale, 12(2020), No. 36, p. 18790. doi: 10.1039/D0NR04615A
|
[89] |
Q.M. Hu, R.L. Yang, Z.C. Mo, et al., Nitrogen-doped and Fe-filled CNTs/NiCo2O4 porous sponge with tunable microwave absorption performance, Carbon, 153(2019), p. 737. doi: 10.1016/j.carbon.2019.07.077
|
[90] |
X. Li, L. Yu, W. Zhao, et al., Prism-shaped hollow carbon decorated with polyaniline for microwave absorption, Chem. Eng. J., 379(2020), art. No. 122393. doi: 10.1016/j.cej.2019.122393
|
[91] |
D.W. Liu, Y.C. Du, Z.N. Li, et al., Facile synthesis of 3D flower-like Ni microspheres with enhanced microwave absorption properties, J. Mater. Chem. C, 6(2018), No. 36, p. 9615. doi: 10.1039/C8TC02931H
|
[92] |
S. Ghosh, S. Bhattacharyya, Y. Kaiprath, and K. Vaibhav Srivastava, Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model, J. Appl. Phys., 115(2014), No. 10, art. No. 104503. doi: 10.1063/1.4868577
|
[93] |
Y. Wang, X.C. Di, Y.Q. Fu, X.M. Wu and J.T. Cao, Facile synthesis of the three-dimensional flower-like ZnFe2O4@MoS2 composite with heterogeneous interfaces as a high-efficiency absorber, J. Colloid Interface Sci., 587(2021), p. 561. doi: 10.1016/j.jcis.2020.11.013
|
[94] |
M. Ding, X. Cai, and H.L. Jiang, Improving MOF stability: Approaches and applications, Chem. Sci., 10(2019), No. 44, p. 10209. doi: 10.1039/C9SC03916C
|
[95] |
M. Zhong, L.J. Kong, N. Li, Y.Y. Liu, J. Zhu, and X.H. Bu, Synthesis of MOF-derived nanostructures and their applications as anodes in lithium and sodium ion batteries, Coord. Chem. Rev., 388(2019), p. 172. doi: 10.1016/j.ccr.2019.02.029
|
[96] |
Y.C. Du, T. Liu, B. Yu, et al., The electromagnetic properties and microwave absorption of mesoporous carbon, Mater. Chem. Phys., 135(2012), No. 2-3, p. 884. doi: 10.1016/j.matchemphys.2012.05.074
|
[97] |
P. Ge, H.S. Hou, S.J. Li, L. Yang, and X.B. Ji, Tailoring rod-like FeSe2 coated with nitrogen-doped carbon for high-performance sodium storage, Adv. Funct. Mater., 28(2018), No. 30, art. No. 1801765. doi: 10.1002/adfm.201801765
|
[98] |
Y.C. Yin, X.F. Liu, X.J. Wei, R.H. Yu, and J.L. Shui, Porous CNTs/Co composite derived from zeolitic imidazolate framework: A lightweight, ultrathin, and highly efficient electromagnetic wave absorber, ACS Appl. Mater. Interfaces, 8(2016), No. 50, p. 34686. doi: 10.1021/acsami.6b12178
|
[99] |
W. Liu, Q.W. Shao, G.B. Ji, et al., Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber, Chem. Eng. J., 313(2017), p. 734. doi: 10.1016/j.cej.2016.12.117
|
[100] |
M. Han, Q. Liu, J. He, Y. Song, Z. Xu, and J.M. Zhu, Controllable synthesis and magnetic properties of cubic and hexagonal phase nickel nanocrystals, Adv. Mater., 19(2007), No. 8, p. 1096. doi: 10.1002/adma.200601460
|
[101] |
Y. Zhang, H.B. Zhang, X. Wu, Z. Deng, E. Zhou, and Z.Z. Yu, Nanolayered cobalt@carbon hybrids derived from metal-organic frameworks for microwave absorption, ACS Appl. Nano Mater., 2(2019), No. 4, p. 2325. doi: 10.1021/acsanm.9b00226
|
[102] |
Y.Y. Lü, Y.T. Wang, H.L. Li, et al., MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties, ACS Appl. Mater. Interfaces, 7(2015), No. 24, p. 13604. doi: 10.1021/acsami.5b03177
|
[103] |
W. Liu, J.C. Liu, Z.H. Yang, and G.B. Ji, Extended working frequency of ferrites by synergistic attenuation through a controllable carbothermal route based on Prussian blue shell, ACS Appl. Mater. Interfaces, 10(2018), No. 34, p. 28887. doi: 10.1021/acsami.8b09682
|
[104] |
X.H. Liang, G.H. Wang, W.H. Gu and G.B. Ji, Prussian blue analogue derived carbon-based composites toward lightweight microwave absorption, Carbon, 177(2021), p. 97. doi: 10.1016/j.carbon.2021.02.063
|
[105] |
T.G. Zhu, Y. Sun, Y.J. Wang, et al., A MOF-driven porous iron with high dielectric loss and excellent microwave absorption properties, J Mater Sci: Mater Electron, 31(2020), No. 9, p. 6843. doi: 10.1007/s10854-020-03244-7
|
[106] |
Z. Xiang, Y.M. Song, J. Xiong, et al., Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworks, Carbon, 142(2019), p. 20. doi: 10.1016/j.carbon.2018.10.014
|
[107] |
Y.Z. Wan, J. Xiao, C.Y. Li, et al., Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies, J. Magn. Magn. Mater., 399(2016), p. 252. doi: 10.1016/j.jmmm.2015.10.006
|
[108] |
X.A. Li, B. Zhang, C.H. Ju, X.J. Han, Y.C. Du, and P. Xu, Morphology-controlled synthesis and electromagnetic properties of porous Fe3O4 nanostructures from iron alkoxide precursors, J. Phys. Chem. C, 115(2011), No. 25, p. 12350. doi: 10.1021/jp203147q
|
[109] |
X. Li, L. Wang, W.B. You, et al., Morphology-controlled synthesis and excellent microwave absorption performance of ZnCo2O4 nanostructures via a self-assembly process of flake units, Nanoscale, 11(2019), No. 6, p. 2694. doi: 10.1039/C8NR08601J
|
[110] |
Q. Liu, X. Xu, W. Xia, et al., Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography, Nanoscale, 7(2015), No. 5, p. 1736. doi: 10.1039/C4NR05547K
|
[111] |
Y. Liao, G.H. He, and Y.P. Duan, Morphology-controlled self-assembly synthesis and excellent microwave absorption performance of MnO2 microspheres of fibrous flocculation, Chem. Eng. J., 425(2021), art. No. 130512. doi: 10.1016/j.cej.2021.130512
|
[112] |
Y. Cheng, Y. Zhao, H.Q. Zhao, et al., Engineering morphology configurations of hierarchical flower-like MoSe2 spheres enable excellent low-frequency and selective microwave response properties, Chem. Eng. J., 372(2019), p. 390. doi: 10.1016/j.cej.2019.04.174
|
[113] |
M.Q. Huang, L. Wang, K. Pei, et al., Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic–dielectric synergy toward strong microwave absorption, Small, 16(2020), No. 14, art. No. 2000158. doi: 10.1002/smll.202000158
|
[114] |
Z.C. Zhang, Y.F. Chen, S. He, et al., Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions, Angew. Chem. Int. Ed., 53(2014), No. 46, p. 12517. doi: 10.1002/anie.201406484
|
[115] |
X.J. Wang, H.G. Zhang, H.H. Lin, et al., Directly converting Fe-doped metal-organic frameworks into highly active and stable Fe–N–C catalysts for oxygen reduction in acid, Nano Energy, 25(2016), p. 110. doi: 10.1016/j.nanoen.2016.04.042
|
[116] |
P. Miao, R. Zhou, K. Chen, J. Liang, Q. Ban, and J. Kong, Tunable electromagnetic wave absorption of supramolecular isomer-derived nanocomposites with different morphology, Adv. Mater. Interfaces, 7(2020), No. 4, art. No. 1901820. doi: 10.1002/admi.201901820
|
[117] |
W.J. Lu, X.T. Guo, Y.Q. Luo, Q. Li, R.M. Zhu, and H. Pang, Core–shell materials for advanced batteries, Chem. Eng. J., 355(2019), p. 208. doi: 10.1016/j.cej.2018.08.132
|
[118] |
Y. Qiu, Y. Lin, H.B. Yang, L. Wang, M.Q. Wang, and B. Wen, Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption, Chem. Eng. J., 383(2020), art. No. 123207. doi: 10.1016/j.cej.2019.123207
|
[119] |
Q. Tang, L.L. Gao, B. Yu, and H.L. Cong, Fabrication of core–shell TiO2@SiO2 composites and investigation on its photocatalytic performance of methyl orange from aqueous solution, Integr. Ferroelectr., 179(2017), No. 1, p. 159. doi: 10.1080/10584587.2017.1331388
|
[120] |
T.Q. Hou, B.B. Wang, Z.R. Jia, et al., A review of metal oxide-related microwave absorbing materials from the dimension and morphology perspective, J Mater Sci: Mater Electron, 30(2019), No. 12, p. 10961. doi: 10.1007/s10854-019-01537-0
|
[121] |
J. Huo, L. Wang, and H.J. Yu, Polymeric nanocomposites for electromagnetic wave absorption, J. Mater. Sci., 44(2009), No. 15, p. 3917. doi: 10.1007/s10853-009-3561-1
|
[122] |
J.W. Liu, J.J. Xu, R.C. Che, H.J. Chen, M.M. Liu, and Z.W. Liu, Hierarchical Fe3O4@TiO2 yolk–shell microspheres with enhanced microwave-absorption properties, Chem. A Eur. J., 19(2013), No. 21, p. 6746. doi: 10.1002/chem.201203557
|
[123] |
L. Wang, X.F. Yu, X. Li, J. Zhang, M. Wang and R.C. Che, MOF-derived yolk–shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption, Chem. Eng. J., 383(2020), art. No. 123099. doi: 10.1016/j.cej.2019.123099
|
[124] |
K. Li, S.C. Jin, F.D. Zhang, et al., Bioinspired phenol-amine chemistry for developing bioadhesives based on biomineralized cellulose nanocrystals, Carbohydr. Polym., 296(2022), art. No. 119892. doi: 10.1016/j.carbpol.2022.119892
|
[125] |
X.L. Wang, Q.Y. Geng, G.M. Shi, Y.J. Zhang, and D. Li, MOF-derived yolk–shell Ni/C architectures assembled with Ni@C core–shell nanoparticles for lightweight microwave absorbents, CrystEngComm, 22(2020), No. 41, p. 6796. doi: 10.1039/D0CE01242D
|
[126] |
D. Li, H.Y. Liao, H. Kikuchi, and T. Liu, Microporous Co@C nanoparticles prepared by dealloying CoAl@C precursors: Achieving strong wideband microwave absorption via controlling carbon shell thickness, ACS Appl. Mater. Interfaces, 9(2017), No. 51, p. 44704. doi: 10.1021/acsami.7b13538
|
[127] |
J.Q. Tao, J.T. Zhou, Z.J. Yao, et al., Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties, Carbon, 172(2021), p. 542. doi: 10.1016/j.carbon.2020.10.062
|
[128] |
X. Meng, Y.Q. Liu, G.H. Han, W.W. Yang, and Y.S. Yu, Three-dimensional (Fe3O4/ZnO)@C Double-core@shell porous nanocomposites with enhanced broadband microwave absorption, Carbon, 162(2020), p. 356. doi: 10.1016/j.carbon.2020.02.035
|
[129] |
M.G. Todd and F.G. Shi, Validation of a novel dielectric constant simulation model and the determination of its physical parameters, Microelectron. J., 33(2002), No. 8, p. 627. doi: 10.1016/S0026-2692(02)00038-1
|
[130] |
S. Gao, G.Z. Zhang, Y. Wang, X.P. Han, Y. Huang, and P.B. Liu, MOFs derived magnetic porous carbon microspheres constructed by core–shell Ni@C with high-performance microwave absorption, J. Mater. Sci. Technol., 88(2021), p. 56. doi: 10.1016/j.jmst.2021.02.011
|
[131] |
K.F. Wang, Y.J. Chen, R. Tian, et al., Porous Co–C core–shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance, ACS Appl. Mater. Interfaces, 10(2018), No. 13, p. 11333. doi: 10.1021/acsami.8b00965
|
[132] |
W. Liu, L. Liu, Z.H. Yang, J.J. Xu, Y.L. Hou, and G.B. Ji, A versatile route toward the electromagnetic functionalization of metal–organic framework-derived three-dimensional nanoporous carbon composites, ACS Appl. Mater. Interfaces., 10(2018), No. 10, p. 8965. doi: 10.1021/acsami.8b00320
|
[133] |
P. Miao, J. Chen, Y. Tang, K.J. Chen, and J. Kong, Highly efficient and broad electromagnetic wave absorbers tuned via topology-controllable metal-organic frameworks, Sci. China Mater., 63(2020), No. 10, p. 2050. doi: 10.1007/s40843-020-1333-9
|
[134] |
J. Su, Z.G. Nie, Y. Feng, et al., Hollow core–shell structure Co/C@MoSe2 composites for high-performance microwave absorption, Composites Part A, 162(2020), art. No. 107140. doi: 10.1016/j.compositesa.2022.107140
|
[135] |
Z.Y. Tong, Z.J. Liao, Y.Y. Liu, et al., Hierarchical Fe3O4/Fe@C@MoS2 core–shell nanofibers for efficient microwave absorption, Carbon, 179(2021), p. 646. doi: 10.1016/j.carbon.2021.04.051
|
[136] |
M.L. Ma, Y. Bi, Z. Jiao, et al., Facile fabrication of metal-organic framework derived Fe/Fe3O4/FeN/N-doped carbon composites coated with PPy for superior microwave absorption, J. Colloid Interface Sci., 608(2022), p. 525. doi: 10.1016/j.jcis.2021.09.169
|
[137] |
J. Liang, J. Chen, H. Shen, K. Hu, B. Zhao, and J. Kong, Hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption, Chem. Mater., 33(2021), No. 5, p. 1789. doi: 10.1021/acs.chemmater.0c04734
|
[138] |
J.J. Pan, W. Xia, X. Sun, et al., Improvement of interfacial polarization and impedance matching for two-dimensional leaf-like bimetallic (Co,Zn) doped porous carbon nanocomposites with broadband microwave absorption, Appl. Surf. Sci., 512(2020), art. No. 144894. doi: 10.1016/j.apsusc.2019.144894
|
[139] |
J. Yan, Y. Huang, Y.H. Yan, L. Ding and P.B. Liu, High-performance electromagnetic wave absorbers based on two kinds of nickel-based MOF-derived Ni@C microspheres, ACS Appl. Mater. Interfaces, 11(2019), No. 43, p. 40781. doi: 10.1021/acsami.9b12850
|
[140] |
P.B. Liu, Y.Q. Zhang, J. Yan, Y. Huang, L. Xia, and Z.X. Guang, Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption, Chem. Eng. J., 368(2019), p. 285. doi: 10.1016/j.cej.2019.02.193
|
[141] |
X.Y. Xiao, W.J. Zhu, Z. Tan, et al., Ultra-small Co/CNTs nanohybrid from metal organic framework with highly efficient microwave absorption, Composites Part B, 152(2018), p. 316. doi: 10.1016/j.compositesb.2018.08.109
|
[142] |
J.S. Meng, C.J. Niu, L.H. Xu, et al., General oriented formation of carbon nanotubes from metal-organic frameworks, J. Am. Chem. Soc., 139(2017), No. 24, p. 8212. doi: 10.1021/jacs.7b01942
|
[143] |
B. Quan, X.H. Liang, H. Yi, et al., Thermal conversion of wheat-like metal organic frameworks to achieve MgO/carbon composites with tunable morphology and microwave response, J. Mater. Chem. C, 6(2018), No. 43, p. 11659. doi: 10.1039/C8TC03628D
|
[144] |
J. Yan, Y. Huang, Y.H. Yan, X.X. Zhao, and P.B. Liu, The composition design of MOF-derived Co–Fe bimetallic autocatalysis carbon nanotubes with controllable electromagnetic properties, Composites Part A, 139(2020), p. 106107. doi: 10.1016/j.compositesa.2020.106107
|
[145] |
H.L. Yang, Z.J. Shen, H.L. Peng, Z.Q. Xiong, C.B. Liu, and Y. Xie, 1D–3D mixed-dimensional MnO2@nanoporous carbon composites derived from Mn-metal organic framework with full-band ultra-strong microwave absorption response, Chem. Eng. J., 417(2021), art. No. 128087. doi: 10.1016/j.cej.2020.128087
|
[146] |
L. Pukdeejorhor, K. Adpakpang, P. Ponchai, et al., Polymorphism of mixed metal Cr/Fe terephthalate metal-organic frameworks utilizing a microwave synthetic method, Cryst. Growth Des., 19(2019), No. 10, p. 5581. doi: 10.1021/acs.cgd.9b00508
|
[147] |
H. Li, Z.M. Cao, J.Y. Lin, et al., Synthesis of u-channelled spherical Fex(CoyNi1−y)100−x Janus colloidal particles with excellent electromagnetic wave absorption performance, Nanoscale, 10(2018), No. 4, p. 1930. doi: 10.1039/C7NR06956A
|
[148] |
H. Zhao, Z.H. Zhu, C. Xiong, X.L. Zheng, and Q.Y. Lin, The influence of different Ni contents on the radar absorbing properties of FeNi nano powders, RSC Adv., 6(2016), No. 20, p. 16413. doi: 10.1039/C5RA27179G
|
[149] |
J.L. Snoek, Dispersion and absorption in magnetic ferrites at frequencies above one Mc/S, Physica, 14(1948), No. 4, p. 207. doi: 10.1016/0031-8914(48)90038-X
|
[150] |
D. Kim, M. Ohnishi, N. Matsushita, and M. Abe, Magnetic cores usable in gigahertz range: Permalloy/Ni–Zn ferrite microcomposite made by low-temperature wet process, IEEE Trans. Magn., 39(2003), No. 5, p. 3181. doi: 10.1109/TMAG.2003.816050
|
[151] |
X. Liu, L. Wang, G.Y. Zhang, et al., Zinc assisted epitaxial growth of N-doped CNTs-based zeolitic imidazole frameworks derivative for high efficient oxygen reduction reaction in Zn–air battery, Chem. Eng. J., 414(2021), art. No. 127569. doi: 10.1016/j.cej.2020.127569
|
[152] |
H.L. Xu, X.W. Yin, M. Zhu, et al., Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption, Carbon, 142(2019), p. 346. doi: 10.1016/j.carbon.2018.10.056
|
[153] |
L. Wang, M.Q. Huang, X. Qian, et al., Confined magnetic-dielectric balance boosted electromagnetic wave absorption, Small, 17(2021), No. 30, art. No. 2100970. doi: 10.1002/smll.202100970
|
[154] |
J. Xiong, Z. Xiang, J. Zhao, et al., Layered NiCo alloy nanoparticles/nanoporous carbon composites derived from bimetallic MOFs with enhanced electromagnetic wave absorption performance, Carbon, 154(2019), p. 391. doi: 10.1016/j.carbon.2019.07.096
|
[155] |
T. Bai, D. Wang, J. Yan, et al., Wetting mechanism and interfacial bonding performance of bamboo fiber reinforced epoxy resin composites, Compos. Sci. Technol., 213(2021), art. No. 108951. doi: 10.1016/j.compscitech.2021.108951
|
[156] |
L. Wang, B. Wen, X. Bai, C. Liu, and H. Yang, NiCo alloy/carbon nanorods decorated with carbon nanotubes for microwave absorption, ACS Appl. Nano Mater., 2(2019), No. 12, p. 7827. doi: 10.1021/acsanm.9b01842
|
[157] |
L.T. Yan, L. Cao, P.C. Dai, et al., Metal-organic frameworks derived nanotube of nickel-cobalt bimetal phosphides as highly efficient electrocatalysts for overall water splitting, Adv. Funct. Mater., 27(2017), No. 40, art. No. 1703455. doi: 10.1002/adfm.201703455
|
[158] |
J. Ouyang, Z. He, Y. Zhang, H. Yang, and Q. Zhao, Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal-organic frameworks with superior electromagnetic wave absorption ability, ACS Appl. Mater. Interfaces, 11(2019), No. 42, p. 39304. doi: 10.1021/acsami.9b11430
|
[159] |
C.H. Zhou, C. Wu, D. Liu, and M. Yan, Metal-organic framework derived hierarchical Co/C@V2O3 hollow spheres as a thin, lightweight, and high-efficiency electromagnetic wave absorber, Chem. A Eur. J., 25(2019), No. 9, p. 2234. doi: 10.1002/chem.201805565
|
[160] |
D. Li and Y. Xia, Electrospinning of nanofibers: Reinventing the wheel, Adv. Mater., 16(2004), No. 14, p. 1151. doi: 10.1002/adma.200400719
|
[161] |
A. Madni, R. Kousar, N. Naeem, and F. Wahid, Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering, J. Bioresour. Bioprod., 6(2021), No. 1, p. 11. doi: 10.1016/j.jobab.2021.01.002
|
[162] |
N. Bhardwaj and S.C. Kundu, Electrospinning: A fascinating fiber fabrication technique, Biotechnol. Adv., 28(2010), No. 3, p. 325. doi: 10.1016/j.biotechadv.2010.01.004
|
[163] |
C. Liu, J. Wang, J.S. Li, et al., Electrospun ZIF-based hierarchical carbon fiber as an efficient electrocatalyst for the oxygen reduction reaction, J. Mater. Chem. A, 5(2017), No. 3, p. 1211. doi: 10.1039/C6TA09193H
|
[164] |
M. Bechelany, M. Drobek, C. Vallicari, A. Abou Chaaya, A. Julbe, and P. Miele, Highly crystalline MOF-based materials grown on electrospun nanofibers, Nanoscale, 7(2015), No. 13, p. 5794. doi: 10.1039/C4NR06640E
|
[165] |
W.H. Gu, J. Lv, B. Quan, X.H. Liang, B.S. Zhang, and G.B. Ji, Achieving MOF-derived one-dimensional porous ZnO/C nanofiber with lightweight and enhanced microwave response by an electrospinning method, J. Alloys Compd., 806(2019), p. 983. doi: 10.1016/j.jallcom.2019.07.334
|
[166] |
Y. Li, X.F. Liu, X.Y. Nie, et al., Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material, Adv. Funct. Mater., 29(2019), No. 10, art. No. 1807624. doi: 10.1002/adfm.201807624
|
[167] |
H. Chen, R. Hong, Q.C. Liu, et al., CNFs@carbonaceous Co/CoO composite derived from CNFs penetrated through ZIF-67 for high-efficient electromagnetic wave absorption material, J. Alloys Compd., 752(2018), p. 115. doi: 10.1016/j.jallcom.2018.04.142
|
[168] |
X.C. Zheng, Y.Y. Li, and X. Fun, Design of efficient microwave absorbers based on cobalt-based MOF/SrFe10CoTiO19/carbon nanofibers nanocomposite, J Supercond. Nov. Magn., 33(2020), No. 9, p. 2745. doi: 10.1007/s10948-020-05499-x
|
[169] |
J.X. Wang, J.F. Yang, J. Yang, and H. Zhang, Design of a novel carbon nanotube and metal-organic framework interpenetrated structure with enhanced microwave absorption properties, Nanotechnology, 31(2020), No. 39, art. No. 394002. doi: 10.1088/1361-6528/ab967c
|
[170] |
W.B. Zhang, X.L. Xu, J.H. Yang, et al., High thermal conductivity of poly(vinylidene fluoride)/carbon nanotubes nanocomposites achieved by adding polyvinylpyrrolidone, Compos. Sci. Technol., 106(2015), p. 1. doi: 10.1016/j.compscitech.2014.10.019
|
[171] |
S. Chakraborty, C.K. Tiwari, Y. Wang, G. Gan-Or, E. Gadot, and I.A. Weinstock, Ligand-regulated uptake of dipolar-aromatic guests by hydrophobically assembled suprasphere hosts, J. Am. Chem. Soc., 141(2019), No. 36, p. 14078. doi: 10.1021/jacs.9b07284
|
[172] |
V. Jabbari, J.M. Veleta, M. Zarei-Chaleshtori, J. Gardea-Torresdey, and D.Villagrán, Green synthesis of magnetic MOF@GO and MOF@CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants, Chem. Eng. J., 304(2016), p. 774. doi: 10.1016/j.cej.2016.06.034
|
[173] |
Y.C. Yin, X.F. Liu, X.J. Wei, et al., Magnetically aligned Co–C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber, ACS Appl. Mater. Interfaces, 9(2017), No. 36, p. 30850. doi: 10.1021/acsami.7b10067
|
[174] |
M. Chen, W. Li, T.E. da Silveira Venzel, et al., Effect of constructive rehybridization on transverse conductivity of aligned single-walled carbon nanotube films, Mater. Today, 21(2018), No. 9, p. 937. doi: 10.1016/j.mattod.2018.08.019
|
[175] |
K. Li, S.Q. Jin, G.D. Zeng, et al., Biomimetic development of a strong, mildew-resistant soy protein adhesive via mineral-organic system and phenol-amine synergy, Ind. Crops Prod., 187(2022), art. No. 115412. doi: 10.1016/j.indcrop.2022.115412
|
[176] |
J. Yan, T. Bai, Y.Y. Yue, et al., Nanostructured superior oil-adsorbent nanofiber composites using one-step electrospinning of polyvinylidene fluoride/nanocellulose, Compos. Sci. Technol., 224(2022), art. No. 109490. doi: 10.1016/j.compscitech.2022.109490
|
[177] |
Y. Wang, W.Z. Zhang, X.M. Wu, C.Y. Luo, T. Liang, and G. Yan, Metal-organic framework nanoparticles decorated with graphene: A high-performance electromagnetic wave absorber, J. Magn. Magn. Mater., 416(2016), p. 226. doi: 10.1016/j.jmmm.2016.04.093
|
[178] |
K. Zhang, A.M. Xie, M.X. Sun, W.C. Jiang, F. Wu, and W. Dong, Electromagnetic dissipation on the surface of metal organic framework (MOF)/reduced graphene oxide (RGO) hybrids, Mater. Chem. Phys., 199(2017), p. 340. doi: 10.1016/j.matchemphys.2017.07.026
|
[179] |
S. Mao, H.H. Pu, and J.H. Chen, Graphene oxide and its reduction: Modeling and experimental progress, RSC Adv., 2(2012), No. 7, p. 2643. doi: 10.1039/c2ra00663d
|
[180] |
B. Kuang, W.L. Song, M.Q. Ning, et al., Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide, Carbon, 127(2018), p. 209. doi: 10.1016/j.carbon.2017.10.092
|
[181] |
H.F. Qiu, X.Y. Zhu, P. Chen, et al., Magnetic dodecahedral CoC-decorated reduced graphene oxide as excellent electromagnetic wave absorber, J. Electron. Mater., 49(2020), No. 2, p. 1204. doi: 10.1007/s11664-019-07837-9
|
[182] |
Q.Q. Li, Y.H. Zhao, X.H. Li, et al., MOF induces 2D GO to assemble into 3D accordion-like composites for tunable and optimized microwave absorption performance, Small, 16(2020), No. 42, art. No. 2003905. doi: 10.1002/smll.202003905
|
[183] |
Y.Q Wang, H.G. Wang, J.H. Ye, L.Y. Shi, and X. Feng, Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption, Chem. Eng. J., 383(2020), art. No. 123096. doi: 10.1016/j.cej.2019.123096
|
[184] |
X. Xu, S. Shi, Y. Tang, et al., Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application, Adv. Sci., 8(2021), No. 5, art. No. 2002658. doi: 10.1002/advs.202002658
|
[185] |
R. Qiang, Y.C. Du, H.T. Zhao, et al., Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption, J. Mater. Chem. A, 3(2015), No. 25, p. 13426. doi: 10.1039/C5TA01457C
|
[186] |
B.Y. Zhu, P. Miao, J. Kong, X.L. Zhang, G.Y. Wang, and K.J. Chen, Co/C composite derived from a newly constructed metal-organic framework for effective microwave absorption, Cryst. Growth Des., 19(2019), No. 3, p. 1518. doi: 10.1021/acs.cgd.9b00064
|
[187] |
L.N. Huang, C.G. Chen, X.Y. Huang, S.C. Ruan, and Y.J. Zeng, Enhanced electromagnetic absorbing performance of MOF-derived Ni/NiO/Cu@C composites, Composites Part B, 164(2019), p. 583. doi: 10.1016/j.compositesb.2019.01.081
|
[188] |
R.T. Lv, A.Y. Cao, F.Y. Kang, et al., Single-crystalline permalloy nanowires in carbon nanotubes: Enhanced encapsulation and magnetization, J. Phys. Chem. C, 111(2007), No. 30, p. 11475. doi: 10.1021/jp0730803
|
[189] |
C.Q. Ge, L.Y. Wang, G. Liu, et al., Electromagnetic and microwave absorption properties of iron pentacarbonyl pyrolysis-synthesized carbonyl iron fibers, RSC Adv., 10(2020), No. 40, p. 23702. doi: 10.1039/D0RA00222D
|
[190] |
B. Quan, X.H. Liang, G.B. Ji, et al., Strong electromagnetic wave response derived from the construction of dielectric/magnetic media heterostructure and multiple interfaces, ACS Appl. Mater. Interfaces, 9(2017), No. 11, p. 9964. doi: 10.1021/acsami.6b15788
|
[191] |
J.J, Ding, L. Wang, Y.H. Zhao, et al., Rutile TiO2 nanoparticles encapsulated in a zeolitic imidazolate framework-derived hierarchical carbon framework with engineered dielectricity as an excellent microwave absorber, ACS Appl. Mater. Interfaces, 12(2020), No. 42, p. 48140. doi: 10.1021/acsami.0c12764
|
[192] |
Q. Tang, Z. Zhou, and P.W. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer J. Am. Chem. Soc., 134(2012), No. 40, p. 16909. doi: 10.1021/ja308463r
|
[193] |
L.S. Wei, W. Deng, S.S. Li, Z.G. Wu, J.H. Cai and J.W. Luo, Sandwich-like chitosan porous carbon Spheres/MXene composite with high specific capacitance and rate performance for supercapacitors, J. Bioresour. Bioprod., 7(2022), No. 1, p. 63. doi: 10.1016/j.jobab.2021.10.001
|
[194] |
Z.W. Seh, K.D. Fredrickson, B. Anasori, et al., Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution, ACS Energy Lett., 1(2016), No. 3, p. 589. doi: 10.1021/acsenergylett.6b00247
|
[195] |
J. Ran, G. Gao, F.T. Li, T.Y. Ma, A. Du, and S.Z. Qiao, Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production, Nat. Commun., 8(2017), art. No. 13907. doi: 10.1038/ncomms13907
|
[196] |
F. Shahzad, S.A. Zaidi, and R.A. Naqvi, 2D transition metal carbides (MXene) for electrochemical sensing: A review, Crit. Rev. Anal. Chem., 52(2022), No. 4, p. 848. doi: 10.1080/10408347.2020.1836470
|
[197] |
Y.C. Cai, J. Shen, G. Ge, et al., Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range, ACS Nano, 12(2018), No. 1, p. 56. doi: 10.1021/acsnano.7b06251
|
[198] |
M.K. Han, X.W. Yin, X.L. Li, et al., Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes, ACS Appl. Mater. Interfaces, 9(2017), No. 23, p. 20038. doi: 10.1021/acsami.7b04602
|
[199] |
J. Liu, H.B. Zhang, R. Sun, et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding, Adv. Mater., 29(2017), No. 38, art. No. 1702367. doi: 10.1002/adma.201702367
|
[200] |
P. He, X.X. Wang, Y.Z. Cai, et al., Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding, Nanoscale, 11(2019), No. 13, p. 6080. doi: 10.1039/C8NR10489A
|
[201] |
G.Z. Cui, X. Zheng, X.L. Lv, Q. Jia, W. Xie, and G.X. Gu, Synthesis and microwave absorption of Ti3C2Tx MXene with diverse reactant concentration, reaction time, and reaction temperature, Ceram. Int., 45(2019), No. 17, p. 23600. doi: 10.1016/j.ceramint.2019.08.071
|
[202] |
H.Y. Wang, X.B. Sun, and G.S. Wang, A MXene-modulated 3D crosslinking network of hierarchical flower-like MOF derivatives towards ultra-efficient microwave absorption properties, J. Mater. Chem. A, 9(2021), No. 43, p. 24571. doi: 10.1039/D1TA06505J
|
[203] |
B.W. Deng, Z. Xiang, J. Xiong, Z.C. Liu, L.Z. Yu, and W. Lu, Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption, Nano-Micro Lett., 12(2020), No. 1, art. No. 55. doi: 10.1007/s40820-020-0398-2
|
[204] |
J. Liu, H.B. Zhang, X. Xie, et al., Multifunctional, superelastic, and lightweight MXene/polyimide aerogels, Small, 14(2018), No. 45, art. No. 1802479. doi: 10.1002/smll.201802479
|
[205] |
Y.M. Wang, X. Wang, X.L. Li, et al., Engineering 3D ion transport channels for flexible MXene films with superior capacitive performance, Adv. Funct. Mater., 29(2019), No. 14, art. No. 1900326. doi: 10.1002/adfm.201900326
|
[206] |
F. Wu, Z.H. Liu, J.Q. Wang, et al., Template-free self-assembly of MXene and CoNi-bimetal MOF into intertwined one-dimensional heterostructure and its microwave absorbing properties, Chem. Eng. J., 422(2021), art. No. 130591. doi: 10.1016/j.cej.2021.130591
|
[207] |
Y. Gu, Y.N. Wu, L. Li, W. Chen, F. Li, and S. Kitagawa, Controllable modular growth of hierarchical MOF-on-MOF architectures, Angew. Chem. Int. Ed., 56(2017), No. 49, p. 15658. doi: 10.1002/anie.201709738
|
[208] |
J. Yang, F.J. Zhang, H.Y. Lu, et al., Hollow Zn/Co ZIF particles derived from core–shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene, Angew. Chem. Int. Ed., 127(2015), No. 37, p. 11039. doi: 10.1002/ange.201504242
|
[209] |
C. Liu, J. Wang, J.J. Wan, and C.Z. Yu, MOF-on-MOF hybrids: Synthesis and applications, Coord. Chem. Rev., 432(2021), art. No. 213743. doi: 10.1016/j.ccr.2020.213743
|
[210] |
M.T. Zhao, K. Yuan, Y. Wang, et al., Metal-organic frameworks as selectivity regulators for hydrogenation reactions, Nature, 539(2016), No. 7627, p. 76. doi: 10.1038/nature19763
|
[211] |
B.Y. Guan, L. Yu, and X.W. (David) Lou, A dual-metal-organic-framework derived electrocatalyst for oxygen reduction, Energy Environ. Sci., 9(2016), No. 10, p. 3092. doi: 10.1039/C6EE02171A
|
[212] |
S.L. Zhang, B.Y. Guan, H.B. Wu, and X.W.D. Lou, Metal-organic framework-assisted synthesis of compact Fe2O3 nanotubes in Co3O4 host with enhanced lithium storage properties, Nano-Micro Lett., 10(2018), No. 3, art. No. 44. doi: 10.1007/s40820-018-0197-1
|
[213] |
L.L. Chai, J.Q. Pan, Y. Hu, J.J. Qian and M.C. Hong, Rational design and growth of MOF-on-MOF heterostructures, Small, 17(2021), No. 36, art. No. 2100607. doi: 10.1002/smll.202100607
|
[214] |
X.H. Liang, B. Quan, G.B. Ji, et al., Novel nanoporous carbon derived from metal-organic frameworks with tunable electromagnetic wave absorption capabilities, Inorg. Chem. Front., 3(2016), No. 12, p. 1516. doi: 10.1039/C6QI00359A
|
[215] |
P.B. Liu, S. Gao, Y. Wang, et al., Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials, Chem. Eng. J., 381(2020), art. No. 122653. doi: 10.1016/j.cej.2019.122653
|
[216] |
F. Wu, Q. Li, Z.H. Liu, et al., Fabrication of binary MOF-derived hybrid nanoflowers via selective assembly and their microwave absorbing properties, Carbon, 182(2021), p. 484. doi: 10.1016/j.carbon.2021.06.044
|
[217] |
W. Feng, Y.M. Wang, Y.C. Zou, J.C. Chen, D.C. Jia, and Y. Zhou, ZnO@ N-doped porous carbon/Co3ZnC core–shell heterostructures with enhanced electromagnetic wave attenuation ability, Chem. Eng. J., 342(2018), p. 364. doi: 10.1016/j.cej.2018.02.078
|
[218] |
K. Ikigaki, K. Okada, Y. Tokudome, et al., MOF-on-MOF: Oriented growth of multiple layered thin films of metal-organic frameworks, Angew. Chem. Int. Ed., 58(2019), No. 21, p. 6886. doi: 10.1002/anie.201901707
|
[219] |
G. Lee, S. Lee, S. Oh, D. Kim, and M. Oh, Tip-to-middle anisotropic MOF-on-MOF growth with a structural adjustment, J. Am. Chem. Soc., 142(2020), No. 6, p. 3042. doi: 10.1021/jacs.9b12193
|
[220] |
J. Yan, Y. Huang, X.P. Han, X.G. Gao, and P.B. Liu, Metal organic framework (ZIF-67)-derived hollow CoS2/N-doped carbon nanotube composites for extraordinary electromagnetic wave absorption, Composites Part B, 163(2019), p. 67. doi: 10.1016/j.compositesb.2018.11.008
|
[221] |
J.B. Chen, J. Zheng, F. Wang, Q.Q. Huang, and G.B. Ji, Carbon fibers embedded with FeIII-MOF-5-derived composites for enhanced microwave absorption, Carbon, 174(2021), p. 509. doi: 10.1016/j.carbon.2020.12.077
|
[222] |
X.Q. Xu, F.T. Ran, Z.M. Fan, et al., Bimetallic metal-organic framework-derived pomegranate-like nanoclusters coupled with CoNi-doped graphene for strong wideband microwave absorption, ACS Appl. Mater. Interfaces, 12(2020), No. 15, p. 17870. doi: 10.1021/acsami.0c01572
|
[223] |
Z. Xiang, J. Xiong, B.W. Deng, et al., Rational design of 2D hierarchically laminated Fe3O4@nanoporous carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications, J. Mater. Chem. C, 8(2020), No. 6, p. 2123. doi: 10.1039/C9TC06526A
|
[224] |
X. Zhang, J. Qiao, J.B. Zhao, et al., High-efficiency electromagnetic wave absorption of cobalt-decorated NH2-UIO-66-derived porous ZrO2/C, ACS Appl. Mater. Interfaces, 11(2019), No. 39, p. 35959. doi: 10.1021/acsami.9b10168
|
[225] |
Y. Zhang, Z.H. Yang, M. Li, et al., Heterostructured CoFe@C@MnO2 nanocubes for efficient microwave absorption, Chem. Eng. J., 382(2020), art. No. 123039. doi: 10.1016/j.cej.2019.123039
|
[226] |
F.Y. Wang, N. Wang, X.J. Han, et al., Core–shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption, Carbon, 145(2019), p. 701. doi: 10.1016/j.carbon.2019.01.082
|
[227] |
P. Miao, K.Y. Cheng, H.Q. Li, et al., Poly(dimethylsilylene)diacetylene-guided ZIF-based heterostructures for full Ku-band electromagnetic wave absorption, ACS Appl. Mater. Interfaces, 11(2019), No. 19, p. 17706. doi: 10.1021/acsami.9b03944
|
[228] |
X.P. Han, Y. Huang, L. Ding, Y. Song, T.H. Li, and P.B. Liu, Ti3C2Tx MXene nanosheet/metal-organic framework composites for microwave absorption, ACS Appl. Nano Mater., 4(2021), No. 1, p. 691. doi: 10.1021/acsanm.0c02983
|