Cite this article as:

Huaxin Qi, Jing Bai, Miao Jin, Jiaxin Xu, Xin Liu, Ziqi Guan, Jianglong Gu, Daoyong Cong, Xiang Zhao, and Liang Zuo, First-principles calculations of Ni–(Co)–Mn–Cu–Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp.930-938. https://dx.doi.org/10.1007/s12613-022-2566-5
Huaxin Qi, Jing Bai, Miao Jin, Jiaxin Xu, Xin Liu, Ziqi Guan, Jianglong Gu, Daoyong Cong, Xiang Zhao, and Liang Zuo, First-principles calculations of Ni–(Co)–Mn–Cu–Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp.930-938. https://dx.doi.org/10.1007/s12613-022-2566-5
引用本文 PDF XML SpringerLink

全d族Ni–(Co)–Mn–Cu–Ti合金马氏体相变、力学性能和磁性能的第一性原理计算

摘要: 全 d 族 Ni–Mn–Ti 基 Heusler 合金作为一种新型的智能材料,因其丰富的物理性质被广泛关注。与传统 Ni–Mn 基合金不同,Ni–Mn–Ti 基 Heusler 合金的d–d轨道杂化取代p–d 轨道杂化,提高了合金的塑韧性,解决了传统Ni–Mn 基合金固有脆性大、力学性能差的问题。由于卓越的机械性能和相变过程中较高的熵变,Ni–Mn–Ti 基合金在超弹性和弹热制冷方面具有广阔的研究前景。Cu掺杂和Cu–Co共掺Ni–Mn–Ti 合金的研究很少,本文旨在为Ni–Mn–Ti 基合金的成分设计提供理论支持。本文通过第一性原理计算对Ni2Mn1.5−xCuxTi0.5 (x = 0.125, 0.25, 0.375, 0.5) 和 Ni2−yCoyMn1.5−xCuxTi0.5 (x = 0.125, y = 0.125, 0.25, 0.375, 0.5) 和 (x = 0.125, 0.25, 0.375, y = 0.625)合金系的马氏体相变,力学性能和磁性能进行了系统研究。Ni–(Co)–Mn–Cu–Ti合金马氏体的形成能始终低于奥氏体的形成能,表明合金均能发生马氏体相变。Ni2Mn1.5−xCuxTi0.5 和 Ni2−yCoyMn1.5−xCuxTi0.5 (y < 0.625)合金的奥氏体和非调制马氏体都是反铁磁态的,当y = 0.625时, Ni2−yCoyMn1.5−xCuxTi0.5合金的奥氏体由反铁磁态转变为铁磁态,而马氏体保持反铁磁态,马氏体相变时合金会伴随磁性的突变,即发生磁—结构耦合现象,这是合金具有磁热效应的物理基础。掺Cu能降低Ni–(Co)–Mn–Ti合金的热滞后和各向异性。提高Mn的含量并且降低Ti的含量能提高Ni–Mn–Cu–Ti合金抗剪切和抗正应力的能力,但会降低韧性。就延展性而言,Ni–Mn–Cu–Ti 和 Ni–Co–Mn–Ti合金强于Cu–Co共掺合金。

 

First-principles calculations of Ni–(Co)–Mn–Cu–Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties

Abstract: The martensitic transformation, mechanical, and magnetic properties of the Ni2Mn1.5−xCuxTi0.5 (x = 0.125, 0.25, 0.375, 0.5) and Ni2−yCoyMn1.5−xCuxTi0.5 (x = 0.125, y = 0.125, 0.25, 0.375, 0.5) and (x = 0.125, 0.25, 0.375, y = 0.625) alloys were systematically studied by the first-principles calculations. For the formation energy, the martensite is smaller than the austenite, the Ni–(Co)–Mn–Cu–Ti alloys studied in this work can undergo martensitic transformation. The austenite and non-modulated (NM) martensite always present antiferromagnetic state in the Ni2Mn1.5−xCuxTi0.5 and Ni2−yCoyMn1.5−xCuxTi0.5 (y < 0.625) alloys. When y = 0.625 in the Ni2−yCoyMn1.5−xCuxTi0.5 series, the austenite presents ferromagnetic state while the NM martensite shows antiferromagnetic state. Cu doping can decrease the thermal hysteresis and anisotropy of the Ni–(Co)–Mn–Ti alloy. Increasing Mn and decreasing Ti content can improve the shear resistance and normal stress resistance, but reduce the toughness in the Ni–Mn–Cu–Ti alloy. And the ductility of the Co–Cu co-doping alloy is inferior to that of the Ni–Mn–Cu–Ti and Ni–Co–Mn–Ti alloys. The electronic density of states was studied to reveal the essence of the mechanical and magnetic properties.

 

/

返回文章
返回