留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 10
Oct.  2023

图(6)

数据统计

分享

计量
  • 文章访问数:  479
  • HTML全文浏览量:  282
  • PDF下载量:  32
  • 被引次数: 0
Jingdi Cao, Takuya Hhasegawa, Yusuke Asakura, Akira Yamakata, Peng Sun, Wenbin Cao,  and Shu Yin, Synthesis of crystal-phase and color tunable mixed anion co-doped titanium oxides and their controllable photocatalytic activity, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 2036-2043. https://doi.org/10.1007/s12613-022-2573-6
Cite this article as:
Jingdi Cao, Takuya Hhasegawa, Yusuke Asakura, Akira Yamakata, Peng Sun, Wenbin Cao,  and Shu Yin, Synthesis of crystal-phase and color tunable mixed anion co-doped titanium oxides and their controllable photocatalytic activity, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 2036-2043. https://doi.org/10.1007/s12613-022-2573-6
引用本文 PDF XML SpringerLink
研究论文

晶相和颜色可调控阴离子共掺杂二氧化钛的合成及其可控的光催化活性



  • 通讯作者:

    殷澍    E-mail: yin.shu.b5@tohoku.ac.jp

文章亮点

  • (1) 通过溶剂热反应及后续氮化处理工艺,成功合成了不含过渡金属元素的具有多彩颜色的二氧化钛粉体材料。
  • (2)成功的制备了具有黄色,灰色,绿色,红色,黄绿色,橙色等多种二氧化钛着色粉体。
  • (3)硼氮等阴离子元素共掺杂状态和含量以及二氧化钛的晶相组成对粉体着色具有显著影响。
  • (4) 着色二氧化钛的光催化活性可控,可分别作为无毒彩色颜料・新型化妆品原料或者催化材料加以应用。
  • 二氧化钛除了具有优良的光触媒性能之外,也是不可替代的传统白色颜料和重要的化妆品原料。 为了满足其在各种新型材料领域的应用,通常二氧化钛的可见光吸收及着色可以通过添加过各种不同的过渡金属元素得以实现,但是过渡金属元素一般多具有生物毒性,这会限制着色二氧化钛在化妆品等相关领域的应用。 本研究通过水热反应制备了锐钛矿、金红石和板钛矿相硼掺杂二氧化钛,再通过氨气气氛中进行氮化处理,成功地选择性合成了具有上述不同晶相的硼氮共掺杂二氧化钛粉体(BN-TiO2)。通过本文方法,除了白色和黄色之外,我们还成功的制备了具有灰色,绿色,红色,黄绿色,橙色等多种颜色粉体,实现了非过渡金属元素添加二氧化钛的多彩着色。硼氮等阴离子元素共掺杂元素含量及二氧化钛的晶相组成对粉体着色具有显著影响。氮化时间及氮化温度等也均对二氧化钛粉体的颜色调控具有明显作用。锐钛矿、金红石相硼氮共掺杂材料具有较低的光催化活性,可作为无毒彩色颜料或新型化妆品原料使用,而板钛矿相的硼氮共掺杂具有良好的光催化活性,成为良好的环境净化催化材料候选。
  • Research Article

    Synthesis of crystal-phase and color tunable mixed anion co-doped titanium oxides and their controllable photocatalytic activity

    + Author Affiliations
    • B and N mixed anions co-doped titania with various crystal phases such as anatase, brookite, and rutile were successfully synthesized by a hydrothermal synthesis followed by heat treatment in an ammonia gas atmosphere at 550–650°C (denoted as BN-Ana_x, BN-Bro_x, and BN-Rut_x, x is the treatment temperature). The colors of as-prepared BN-Ana, BN-Bro, and BN-Rut are red, yellow-green, and cyan-green, respectively. The color changing mechanism of titania was related to their various band gap structure and the existence of B–N bonding. The nitridation temperature exhibits effective color changing compared to that of nitridation time. The different phases of the mixed anion co-doped titania possess different photocatalytic deNOx activity. The BN-Ana and BN-Rut show poor photocatalytic deNOx activity, while the BN-Bro shows excellent photocatalytic deNOx activity, better than that of standard titania photocatalyst Degussa P25. The colorful titania with low-photocatalytic activity is heavy metal elements free, indicating their possible applications as nontoxic color pigments or novel cosmetic raw materials.
    • loading
    • Supplementary Information-10.1007s12613-022-2573-6.docx
    • [1]
      P. Zhang, S. Yin, and T. Sato, Synthesis of high-activity TiO2 photocatalyst via environmentally friendly and novel microwave assisted hydrothermal process, Appl. Catal. B, 89(2009), No. 1-2, p. 118. doi: 10.1016/j.apcatb.2008.12.002
      [2]
      S. Yin and Y. Asakura, Recent research progress on mixed valence state tungsten based materials, Tungsten, 1(2019), No. 1, p. 5. doi: 10.1007/s42864-019-00001-0
      [3]
      A. Hermawan, N.L.W. Septiani, A. Taufik, B. Yuliarto, and S. Yin, Advanced strategies to improve performances of molybdenum-based gas sensors, Nano-Micro Lett., 13(2021), No. 1, art. No. 207. doi: 10.1007/s40820-021-00724-1
      [4]
      J. Cao, T. Hasegawa, Y. Asakura, et al., Synthesis and color tuning of titanium oxide inorganic pigment by phase control and mixed-anion co-doping, Adv. Powder Technol., 33(2022), No. 5, art. No. 103576. doi: 10.1016/j.apt.2022.103576
      [5]
      S. Yin, Creation of advanced optical responsive functionality of ceramics by green processes, J. Ceram. Soc. Jpn., 123(2015), No. 1441, p. 823. doi: 10.2109/jcersj2.123.823
      [6]
      Y. Xue and S. Yin, Element doping: A marvelous strategy for pioneering the smart applications of VO2, Nanoscale, 14(2022), No. 31, p. 11054. doi: 10.1039/D2NR01864K
      [7]
      A. Hermawan, T. Amrillah, A. Riapanitra, W.J. Ong, and S. Yin, Prospects and challenges of MXenes as emerging sensing materials for flexible and wearable breath-based biomarker diagnosis, Adv. Healthcare Mater., 10(2021), No. 20, art. No. 2100970. doi: 10.1002/adhm.202100970
      [8]
      S. Yin and T. Hasegawa, Morphology control of transition metal oxides by liquid-phase process and their material development, KONA Powder Part. J., 40(2023), p. 94. doi: 10.14356/kona.2023015
      [9]
      A. Hermawan, H. Son, Y. Asakura, T. Mori, and S. Yin, Synthesis of morphology controllable aluminum nitride by direct nitridation of γ-AlOOH in the presence of N2H4 and their sintering behavior, J. Asian Ceram. Soc., 6(2018), No. 1, p. 63. doi: 10.1080/21870764.2018.1439611
      [10]
      A. Hermawan, Y. Asakura, and S. Yin, Morphology control of aluminum nitride (AlN) for a novel high-temperature hydrogen sensor, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1560. doi: 10.1007/s12613-020-2143-8
      [11]
      S. Chu and A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature, 488(2012), No. 7411, p. 294. doi: 10.1038/nature11475
      [12]
      A.G. Olabi, M. Mahmoud, B. Soudan, T. Wilberforce, and M. Ramadan, Geothermal based hybrid energy systems, toward eco-friendly energy approaches, Renewable Energy, 147(2020), p. 2003. doi: 10.1016/j.renene.2019.09.140
      [13]
      N.L. Panwar, S.C. Kaushik, and S. Kothari, Role of renewable energy sources in environmental protection: A review, Renewable Sustainable Energy Rev., 15(2011), No. 3, p. 1513. doi: 10.1016/j.rser.2010.11.037
      [14]
      G. Liu, L.C. Yin, J. Wang, et al., A red anatase TiO2 photocatalyst for solar energy conversion, Energy Environ. Sci., 5(2012), No. 11, p. 9603. doi: 10.1039/c2ee22930g
      [15]
      G. Liu, J. Pan, L. Yin, et al., Heteroatom-modulated switching of photocatalytic hydrogen and oxygen evolution preferences of anatase TiO2 microspheres, Adv. Funct. Mater., 22(2012), No. 15, p. 3233. doi: 10.1002/adfm.201200414
      [16]
      D. Wang, S. Wang, B. Li, Z. Zhang, and Q. Zhang, Tunable band gap of N, V co-doped Ca:TiO2B (CaTi5O11) for visible-light photocatalysis, Int. J. Hydrogen Energy, 44(2019), No. 10, p. 4716. doi: 10.1016/j.ijhydene.2018.12.223
      [17]
      X. Li, Y. Liu, P. Yang, and Y. Shi, Visible light-driven photocatalysis of W, N co-doped TiO2, Particuology, 11(2013), No. 6, p. 732. doi: 10.1016/j.partic.2012.06.018
      [18]
      S. Komatsuda, Y. Asakura, J.J.M. Vequizo, A. Yamakata, and S. Yin, Enhanced photocatalytic NOx decomposition of visible-light responsive F-TiO2/(N, C)-TiO2 by charge transfer between F-TiO2 and (N, C)-TiO2 through their doping levels, Appl. Catal. B, 238(2018), p. 358. doi: 10.1016/j.apcatb.2018.07.038
      [19]
      H.T. Gao, Y.Y. Liu, C.H. Ding, D.M. Dai, and G.J. Liu, Synthesis, characterization, and theoretical study of N, S-codoped nano-TiO2 with photocatalytic activities, Int. J. Miner. Metall. Mater., 18(2011), No. 5, p. 606. doi: 10.1007/s12613-011-0485-y
      [20]
      N. Pienutsa, K. Yannawibut, J. Phattharaphongmanee, O. Thonganantakul, and S. Srinives, Titanium dioxide-graphene composite electrochemical sensor for detection of hexavalent chromium, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 529. doi: 10.1007/s12613-021-2338-7
      [21]
      H.H. Wang, W.X. Liu, J. Ma, et al., Design of (GO/TiO2)N one-dimensional photonic crystal photocatalysts with improved photocatalytic activity for tetracycline degradation, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 830. doi: 10.1007/s12613-019-1923-5
      [22]
      Z. Gu, Z. Cui, Z. Wang, et al., Carbon vacancies and hydroxyls in graphitic carbon nitride: Promoted photocatalytic NO removal activity and mechanism, Appl. Catal. B, 279(2020), art. No. 119376. doi: 10.1016/j.apcatb.2020.119376
      [23]
      C. Noda, Y. Asakura, K. Shiraki, A. Yamakata, and S. Yin, Synthesis of three-component C3N4/rGO/C-TiO2 photocatalyst with enhanced visible-light responsive photocatalytic deNO activity, Chem. Eng. J., 390(2020), art. No. 124616. doi: 10.1016/j.cej.2020.124616
      [24]
      Z. Gu, B. Zhang, Y. Asakura, et al., Alkali-assisted hydrothermal preparation of g-C3N4/rGO nanocomposites with highly enhanced photocatalytic NOx removal activity, Appl. Surf. Sci., 521(2020), art. No. 146213. doi: 10.1016/j.apsusc.2020.146213
      [25]
      H. Li, S. Yin, Y. Wang, and T. Sato, Current progress on persistent fluorescence-assisted composite photocatalysts, Funct. Mater. Lett., 6(2013), No. 6, art. No. 1330005. doi: 10.1142/S1793604713300053
      [26]
      X. Wu, S. Yin, Q. Dong, et al., UV, visible and near-infrared lights induced NOx destruction activity of (Yb, Er)-NaYF4/C-TiO2 composite, Sci. Rep., 3(2013), art. No. 2918. doi: 10.1038/srep02918
      [27]
      X. Wu, S. Yin, Q. Dong, and T. Sato, Blue/green/red colour emitting up-conversion phosphors coupled C-TiO2 composites with UV, visible and NIR responsive photocatalytic performance, Appl. Catal. B, 156-157(2014), p. 257. doi: 10.1016/j.apcatb.2014.03.028
      [28]
      R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293(2001), No. 5528, p. 269. doi: 10.1126/science.1061051
      [29]
      H. Lin, L. Li, M. Zhao, et al., Synthesis of high-quality brookite TiO2 single-crystalline nanosheets with specific facets exposed: Tuning catalysts from inert to highly reactive, J. Am. Chem. Soc., 134(2012), No. 20, p. 8328. doi: 10.1021/ja3014049
      [30]
      A. Inagawa and N. Uehara, Development of colorimetric analysis with smartphones-captured images based on RGB-spectrum conversion methods, Bunseki Kagaku, 69(2020), No. 12, p. 693. doi: 10.2116/bunsekikagaku.69.693
      [31]
      Japanese Industrial Standard, Fine ceramics (advanced ceramics, advanced technical ceramics)– Test Method for Air Purification Performance of Photocatalytic Materials–Part 1: Removal of Nitric Oxide, Japanese Standards Association, Tokyo, 2016.
      [32]
      V.V. Ivanov, I.A. Blokhina, and S.D. Kirik, Synthesis of TiB2 by carbothermal reduction of oxides at lowered temperatures, Russ J. Appl. Chem., 86(2013), No. 11, p. 1650. doi: 10.1134/S1070427213110049
      [33]
      A. Ghanbari, M. Sakaki, A. Faeghinia, M.S. Bafghi, and K. Yanagisawa, Synthesis of nanocrystalline TiB2 powder from TiO2, B2O3 and Mg reactants through microwave-assisted self-propagating high-temperature synthesis method, Bull. Mater. Sci., 39(2016), No. 4, p. 925. doi: 10.1007/s12034-016-1229-4
      [34]
      E. Finazzi, C. Di Valentin, and G. Pacchioni, Boron-doped anatase TiO2: Pure and hybrid DFT calculations, J. Phys. Chem. C, 113(2009), No. 1, p. 220. doi: 10.1021/jp8072238
      [35]
      Y. Du, Z. Wang, H. Chen, H.Y. Wang, G. Liu, and Y. Weng, Effect of trap states on photocatalytic properties of boron-doped anatase TiO2 microspheres studied by time-resolved infrared spectroscopy, Phys. Chem. Chem. Phys., 21(2019), No. 8, p. 4349. doi: 10.1039/C8CP06109B
      [36]
      C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, and E. Giamello, Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations, J. Phys. Chem. B, 109(2005), No. 23, p. 11414. doi: 10.1021/jp051756t
      [37]
      Z. Zhang, X. Wang, J. Long, Q. Gu, Z. Ding, and X. Fu, Nitrogen-doped titanium dioxide visible light photocatalyst: Spectroscopic identification of photoactive centers, J. Catal., 276(2010), No. 2, p. 201. doi: 10.1016/j.jcat.2010.07.033
      [38]
      T. Kanazawa, K. Kato, R. Yamaguchi, et al., Cobalt aluminate spinel as a cocatalyst for photocatalytic oxidation of water: Significant hole-trapping effect, ACS Catal., 10(2020), No. 9, p. 4960. doi: 10.1021/acscatal.0c00944
      [39]
      A. Miyoshi, K. Kato, T. Yokoi, et al., Nano vs. bulk rutile TiO2: N, F in Z-scheme overall water splitting under visible light, J. Mater. Chem. A, 8(2020), No. 24, p. 11996. doi: 10.1039/D0TA04450D
      [40]
      M. Landmann, E. Rauls, and W.G. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2, J. Phys. Condens. Matter, 24(2012), No. 19, art. No. 195503. doi: 10.1088/0953-8984/24/19/195503
      [41]
      C. Di Valentin, G. Pacchioni, and A. Selloni, Origin of the different photoactivity of N-doped anatase and rutile TiO2, Phys. Rev. B, 70(2004), No. 8, art. No. 085116. doi: 10.1103/PhysRevB.70.085116
      [42]
      A. Bjelajac, R. Petrović, M. Popović, et al., Doping of TiO2 nanotubes with nitrogen by annealing in ammonia for visible light activation: Influence of pre- and post-annealing in air, Thin Solid Films, 692(2019), art. No. 137598. doi: 10.1016/j.tsf.2019.137598
      [43]
      H.M. Hwang, S. Oh, J.H. Shim, et al., Phase-selective disordered anatase/ordered rutile interface system for visible-light-driven, metal-free CO2 reduction, ACS Appl. Mater. Interfaces, 11(2019), No. 39, p. 35693. doi: 10.1021/acsami.9b10837
      [44]
      G. Colón, M.C. Hidalgo, and J.A. Navio, Photocatalytic deactivation of commercial TiO2 samples during simultaneous photoreduction of Cr(VI) and photooxidation of salicylic acid, J. Photochem. Photobiol. A, 138(2001), No. 1, p. 79. doi: 10.1016/S1010-6030(00)00372-5
      [45]
      H. Yu, L. Liu, X. Wang, P. Wang, J. Yu, and Y. Wang, The dependence of photocatalytic activity and photoinduced self-stability of photosensitive AgI nanoparticles, Dalton Trans., 41(2012), No. 34, p. 10405. doi: 10.1039/c2dt30864a
      [46]
      X. Chen, L. Liu, P.Y. Yu, and S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science, 331(2011), No. 6018, p. 746. doi: 10.1126/science.1200448

    Catalog


    • /

      返回文章
      返回