留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 8
Aug.  2023

图(11)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  387
  • HTML全文浏览量:  117
  • PDF下载量:  29
  • 被引次数: 0
Shushuai Wang, Renshu Yang, Yongliang Li, Bin Xu,  and Bin Lu, Single-factor analysis and interaction terms on the mechanical and microscopic properties of cemented aeolian sand backfill, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1584-1595. https://doi.org/10.1007/s12613-022-2574-5
Cite this article as:
Shushuai Wang, Renshu Yang, Yongliang Li, Bin Xu,  and Bin Lu, Single-factor analysis and interaction terms on the mechanical and microscopic properties of cemented aeolian sand backfill, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1584-1595. https://doi.org/10.1007/s12613-022-2574-5
引用本文 PDF XML SpringerLink
研究论文

单因素及相互作用项对风积沙胶结充填体力学与微观特性分析


  • 通讯作者:

    王树帅    E-mail: wsstree@163.com

    李永亮    E-mail: lyl_cumtb@163.com

文章亮点

  • (1) 采用响应面法RSM–BBD对风积沙胶结充填体(CASB)力学和微观性能进行了分析。
  • (2) 单因素(水泥含量、灰沙比和质量分数)和交互作用项增强了CASB龄期强度(UCS)。
  • (3) 采用TG/DTG、MIP、SEM等方法分析了CASB的微观结构。
  • (4) 获得了UCS与热重损失量、孔隙含量的拟合关系。
  • 采用风积沙(AS)作为骨料制备煤矿胶结充填材料,可以解决煤矸石不足、风积沙堆积过多的问题。由于对风积沙胶结充填体(CASB)力学机理研究不足,本文采用响应面法(RSM)分析了普通硅酸盐水泥(PO)掺量(x1)、粉煤灰(FA)与风积沙掺量比值 (灰沙比,FA –AS ratio) (x2)、质量浓度(x3)对CASB力学和微观特性的影响。通过热重分析、压汞法和扫描电镜对充填体水化特性和内部孔隙结构进行了评价。RSM结果表明,各因素及相互作用项对CASB力学特性的影响极为显著。单轴抗压强度(UCS)随PO掺量、FA–AS比和质量浓度的增加而增加。分析了交互作用项x1x2x1x3x2x3对CASB的UCS的影响,影响结果表明,一个因素的增加会促进另一个因素对强度的增强效应。养护时间、PO掺量、FA–AS比对充填体的增强机理表现为水化产物的增加和孔隙结构的优化,而浓度的增强机理主要是孔隙结构的优化。UCS与热重损失量、微孔含量呈正相关,与总孔隙度呈负相关。强度与失重量、微孔含量和总孔隙度拟合函数的R2值均超过0.9,补充了基于热重分析和孔隙结构对UCS增强机理的表征。得出了PO掺量、FA–AS比、浓度以及相互作用项对CASB力学性能的影响规律和机理,为CASB充填提供了一定的理论和工程指导。
  • Research Article

    Single-factor analysis and interaction terms on the mechanical and microscopic properties of cemented aeolian sand backfill

    + Author Affiliations
    • The use of aeolian sand (AS) as an aggregate to prepare coal mine cemented filling materials can resolve the problems of gangue shortage and excessive AS deposits. Owing to the lack of research on the mechanism of cemented AS backfill (CASB), the response surface method (RSM) was adopted in this study to analyze the influence of ordinary Portland cement (PO) content (x1), fly ash (FA)–AS (FA–AS) ratio (x2), and concentration (x3) on the mechanical and microscopic properties of the CASB. The hydration characteristics and internal pore structure of the backfill were assessed through thermogravimetric/derivative thermogravimetric analysis, mercury intrusion porosimetry, and scanning electron microscopy. The RSM results show that the influence of each factor and interaction term on the response values is extremely significant (except x1x3, which had no obvious effect on the 28 d strength). The uniaxial compressive strength (UCS) increased with the PO content, FA–AS ratio, and concentration. The interaction effects of x1x2, x1x3, and x2x3 on the UCS at 3, 7, and 28 d were analyzed. In terms of the influence of interaction items, an improvement in one factor promoted the strengthening effect of another factor. The enhancement mechanism of the curing time, PO content, and FA–AS ratio on the backfill was reflected in the increase in hydration products and pore structure optimization. By contrast, the enhancement mechanism of the concentration was mainly the pore structure optimization. The UCS was positively correlated with weight loss and micropore content but negatively correlated with the total porosity. The R2 value of the fitting function of the strength and weight loss, micropore content, and total porosity exceeded 0.9, which improved the characterization of the enhancement mechanism of the UCS based on the thermogravimetric analysis and pore structure. This work obtained that the influence rules and mechanisms of the PO, FA–AS, concentration, and interaction terms on the mechanical properties of the CASB provided a certain theoretical and engineering guidance for CASB filling.
    • loading
    • [1]
      X.J. Zhu, G.L. Guo, H. Liu, and X.Y. Yang, Surface subsidence prediction method of backfill-strip mining in coal mining, Bull. Eng. Geol. Environ., 78(2019), No. 8, p. 6235. doi: 10.1007/s10064-019-01485-3
      [2]
      D. Wu, R.K. Zhao, C.W. Xie, and S. Liu, Effect of curing humidity on performance of cemented paste backfill, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1046. doi: 10.1007/s12613-020-1970-y
      [3]
      Y.L. Li, B. Lu, R.S. Yang, et al., Cemented backfilling mining technology with continuous mining and continuous backfilling method for underground coal mine and typical engineering cases, J. China Coal. Soc., 47( 2022), No. 3, p. 1055.
      [4]
      J.C. Wang, K. Jürgen, and Y. Li, Reflections on resource utilization and sustainable development of closed coal mining areas, J. Min. Sci. Technol., 6(2021), No. 6, p. 633.
      [5]
      A.X. Wu, Z.E. Ruan, and J.D. Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 717. doi: 10.1007/s12613-022-2423-6
      [6]
      B. Xu, Y.L. Li, B. Lu, and J. Li, Analysis of roof bearing characteristics and coal pillar stability of cemented backfill field, J. Min. Sci. Technol., 7(2022), No. 2, p. 200.
      [7]
      S. Cao, G.L. Xue, E. Yilmaz, Z.Y. Yin, and F.D. Yang, Utilizing concrete pillars as an environmental mining practice in underground mines, J. Clean. Prod., 278(2021), art. No. 123433. doi: 10.1016/j.jclepro.2020.123433
      [8]
      J.Y. Wu, M.M. Feng, X.B. Mao, et al., Particle size distribution of aggregate effects on mechanical and structural properties of cemented rockfill: Experiments and modeling, Constr. Build. Mater., 193(2018), p. 295. doi: 10.1016/j.conbuildmat.2018.10.208
      [9]
      J.Y. Wu, H.W. Jing, Y. Gao, Q.B. Meng, Q. Yin, and Y. Du, Effects of carbon nanotube dosage and aggregate size distribution on mechanical property and microstructure of cemented rockfill, Cem. Concr. Compos., 127(2022), art. No. 104408. doi: 10.1016/j.cemconcomp.2022.104408
      [10]
      S.S Wang, Y.L. Li, Q. Li, Z.X. Wang, and Y.X. Wang, Influence of gangue gradation coefficient on the performance of filling material based on Talbol theory, J. Min. Saf. Eng., 39(2022), No. 4, p. 683.
      [11]
      J. Yang, J.L. Wu, and J.Y Jin, Study on the suspended properties of gangue particles with high concentration of gangue and fly ash, J. Min. Sci. Technol., 4(2019), No. 2, p. 127.
      [12]
      J.Y. Li, and J.M. Wang, Comprehensive utilization and environmental risks of coal gangue: A review, J. Clean. Prod., 239(2019), art. No. 117946. doi: 10.1016/j.jclepro.2019.117946
      [13]
      L. Yang, E. Yilmaz, J.W. Li, H. Liu, and H.Q. Jiang, Effect of superplasticizer type and dosage on fluidity and strength behavior of cemented tailings backfill with different solid contents, Constr. Build. Mater., 187(2018), p. 290. doi: 10.1016/j.conbuildmat.2018.07.155
      [14]
      J.H. Liu, Z.B. Zhou, A.X. Wu, and Y.M. Wang, Preparation and hydration mechanism of low concentration Bayer red mud filling Materials, Chin. J. Eng., 42(2020), No. 11, p. 1457.
      [15]
      G.R. Feng, X.Q. Jia, Y.X. Guo, et al., Influence of the wasted concrete coarse aggregate on the performance of cemented paste backfill, J. China Coal Soc., 40(2015), No. 6, p. 1320.
      [16]
      N. Zhou, J.X. Zhang, S.Y. Ouyang, X.J. Deng, C.W. Dong, and E.B. Du, Feasibility study and performance optimization of sand-based cemented paste backfill materials, J. Clean. Prod., 259(2020), art. No. 120798. doi: 10.1016/j.jclepro.2020.120798
      [17]
      C. Li, D. Yao, S.H. Liu, et al., Improvement of geomechanical properties of bio-remediated aeolian sand, Geomicrobiol. J., 35(2018), No. 2, p. 132. doi: 10.1080/01490451.2017.1338798
      [18]
      G.X. Chen, Z.B. Dong, C. Li, et al., Provenance of aeolian sediments in the Ordos Deserts and its implication for weathering, sedimentary processes, Front. Earth Sci., 9(2021), art. No. 711802. doi: 10.3389/feart.2021.711802
      [19]
      Q. Sun, J.X. Zhang, N. Zhou, and W.Y. Qi, Roadway backfill coal mining to preserve surface water in Western China, Mine Water Environ., 37(2018), No. 2, p. 366. doi: 10.1007/s10230-017-0466-0
      [20]
      Q.L. Zhang, Q.S. Chen, and X.M. Wang, Cemented backfilling technology of paste-like based on aeolian sand and tailings, Minerals, 6(2016), No. 4, art. No. 132. doi: 10.3390/min6040132
      [21]
      Y. Xue, P.L. Li, C.X. Zhao, Y. Wang, C. Sun, and M.D. Khan, Investigation to the skid resistance of asphalt pavement based on the movement of aeolian sand, Constr. Build. Mater., 318(2022), art. No. 125986. doi: 10.1016/j.conbuildmat.2021.125986
      [22]
      Y.G. Li, H.M. Zhang, G.X. Liu, D.W. Hu, and X.R. Ma, Multi-scale study on mechanical property and strength prediction of aeolian sand concrete, Constr. Build. Mater., 247(2020), art. No. 118538. doi: 10.1016/j.conbuildmat.2020.118538
      [23]
      J. Xin, L. Liu, L.H. Xu, J.Y. Wang, P. Yang, and H.S. Qu, A preliminary study of aeolian sand-cement-modified gasification slag-paste backfill: Fluidity, microstructure, and leaching risks, Sci. Total Environ., 830(2022), art. No. 154766. doi: 10.1016/j.scitotenv.2022.154766
      [24]
      J. Xin, L. Liu, Q. Jiang, P. Yang, H.S. Qu, and G. Xie, Early-age hydration characteristics of modified coal gasification slag-cement-aeolian sand paste backfill, Constr. Build. Mater., 322(2022), art. No. 125936. doi: 10.1016/j.conbuildmat.2021.125936
      [25]
      L. Liu, S.S. Ruan, C.C. Qi, et al., Co-disposal of magnesium slag and high-calcium fly ash as cementitious materials in backfill, J. Clean. Prod., 279(2021), art. No. 123684. doi: 10.1016/j.jclepro.2020.123684
      [26]
      X.D. Wang, Influence of the perfomance of eolian arenaceous cemented filling materials on response of water-solid ratio, Coal Geol. Explor., 44(2016), No. 6, p. 106.
      [27]
      P.L. Liu, H.X. Zhang, F. Cui, K.H. Sun, and W.M. Sun, Technology and practice of mechanized backfill mining for water protection with aeolian sand paste-like, J. China Coal Soc., 42(2017), No. 1, p. 118.
      [28]
      Q. Sun, J.X. Zhang, and N. Zhou, Early-age strength of aeolian sand-based cemented backfilling materials: Experimental results, Arab. J. Sci. Eng., 43(2018), No. 4, p. 1697. doi: 10.1007/s13369-017-2654-4
      [29]
      Y.S. Tang, L.F. Zhang, and H.Y. Lv, Study on proportion optimization of coal-based solid wastes filling materials, J. Min. Sci. Technol., 4(2019), No. 4, p. 327.
      [30]
      Z.C. Liu, G.W. Wang, X.Y. Xiao, and F. Liu, Process optimization of selective laser melting nickel-based superalloy, Powder. Metall. Technol., 39(2021), No. 1, p. 81.
      [31]
      Y.L. Wang, L. Xiao, G.Y. Fu, et al., Arsenic removal from pyrite cinders in Na2S–NaOH solution with parameters optimized using the response surface methodology, Chin. J. Eng., 40(2018), No. 9, p. 1036.
      [32]
      Y. Liu, M. Zhou, K. Zhang, L. Wu, and L. Peng, The optimization of pervious concrete ratios with spontaneous combustion gangue aggregates based on the RSM–BBD method, J. Min. Sci. Technol., 7(2022), No. 5, p. 565.
      [33]
      P. Hansdah and S. Kumar, Analysis of settling performance of coal fines tailing polymer using central composite rotatable design optimization, Int. J. Coal Prep. Util., 42(2022), No. 2, p. 191. doi: 10.1080/19392699.2019.1590344
      [34]
      S.H. Yin, S. Hao, L. Zou, Y.Y. Dou, and X.W. Li, Research on strength regression and slurry optimization of cemented backfill based on response surface method, J. Cent. South Univ. Sci. Technol., 51(2020), No. 6, p. 1595.
      [35]
      Z.G. Fu, D.P. Qiao, Z.L. Guo, J.C. Xie, F. Huang, and J.X. Wang, Experimental research on mixture proportion and strength of cemented hydraulic fill with waste rock and eolian sand based on RSM–BBD, J. China Coal Soc., 43(2018), No. 3, p. 694.
      [36]
      S. Cao, W.D. Song, and E. Yilmaz, Influence of structural factors on uniaxial compressive strength of cemented tailings backfill, Constr. Build. Mater., 174(2018), p. 190. doi: 10.1016/j.conbuildmat.2018.04.126
      [37]
      Y.Y. Tan, E. Davide, Y.C. Zhou, W.D. Song, and X. Meng, Long-term mechanical behavior and characteristics of cemented tailings backfill through impact loading, Int. J. Miner Metall Mater., 27(2020), No. 2, p. 140. doi: 10.1007/s12613-019-1878-6
      [38]
      G. Xue and E. Yilmaz, Strength, acoustic, and fractal behavior of fiber reinforced cemented tailings backfill subjected to triaxial compression loads, Constr. Build. Mater., 338(2022), art. No. 127667. doi: 10.1016/j.conbuildmat.2022.127667
      [39]
      H.Y. Cheng, S.C. Wu, X.Q. Zhang, and A.X. Wu, Effect of particle gradation characteristics on yield stress of cemented paste backfill, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 10. doi: 10.1007/s12613-019-1865-y
      [40]
      Q.L. You, Z. Yang, J.L. Ma, et al., Analysis of the particle characteristics of aeolian sand in Yulin area, China, Adv. Civ. Eng., 2022(2022), p. 1.
      [41]
      L.P. Zhang, Y.Y. An, E.Y. Wu, et al., Optimization of fluorine mine water treatment and fluorine removal mechanism using response surface methodology, J. Min. Sci. Technol., 7(2022), No. 6, p. 782.
      [42]
      J.Y. Wu, H.W. Jing, Q. Yin, L.Y. Yu, B. Meng, and S.C. Li, Strength prediction model considering material, ultrasonic and stress of cemented waste rock backfill for recycling gangue, J. Clean. Prod., 276(2020), art. No. 123189. doi: 10.1016/j.jclepro.2020.123189
      [43]
      S. Haruna and M. Fall, Time-and temperature-dependent rheological properties of cemented paste backfill that contains superplasticizer, Powder Technol., 360(2020), p. 731. doi: 10.1016/j.powtec.2019.09.025
      [44]
      W. Xu, Q. Li, and B. Liu, Coupled effect of curing temperature and age on compressive behavior, microstructure and ultrasonic properties of cemented tailings backfill, Constr. Build. Mater., 237(2020), art. No. 117738. doi: 10.1016/j.conbuildmat.2019.117738
      [45]
      W. Liu, Z. Guo, C. Wang, and S. Niu, Physico-mechanical and microstructure properties of cemented coal gangue-fly ash backfill: Effects of curing temperature, Constr. Build. Mater., 299(2021), art. No. 124011. doi: 10.1016/j.conbuildmat.2021.124011
      [46]
      X.H. Deng, X.Y. Gao, R. Wang, and C.J. Zhao, Study on frost and pore distribution change of recycled concrete, Mater. Rep., 35(2021), No. 16, p. 16028.
      [47]
      L. Liu, J. Xin, C. Huan, et al., Effect of curing time on the mesoscopic parameters of cemented paste backfill simulated using the particle flow code technique, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 590. doi: 10.1007/s12613-020-2007-2
      [48]
      J.J. Li, S. Cao, E. Yilmaz, and Y.P. Liu, Compressive fatigue behavior and failure evolution of additive fiber-reinforced cemented tailings composites, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 345. doi: 10.1007/s12613-021-2351-x
      [49]
      B.W. Wang, L.J. Gao, W.H. Zhao, Y.N. Li, and W. Ding, Microscopic experiment of consolidating tailings by Linglong cementitious material, J. Min. Sci. Technol, 4(2019), No. 6, p. 524.

    Catalog


    • /

      返回文章
      返回