留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 6
Jun.  2023

图(13)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  902
  • HTML全文浏览量:  398
  • PDF下载量:  68
  • 被引次数: 0
Haoyan Sun, Zheng Zou, Meiju Zhang, and Dong Yan, Fluidized magnetization roasting of refractory siderite-containing iron ore via preoxidation–low-temperature reduction, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1057-1066. https://doi.org/10.1007/s12613-022-2576-3
Cite this article as:
Haoyan Sun, Zheng Zou, Meiju Zhang, and Dong Yan, Fluidized magnetization roasting of refractory siderite-containing iron ore via preoxidation–low-temperature reduction, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1057-1066. https://doi.org/10.1007/s12613-022-2576-3
引用本文 PDF XML SpringerLink
研究论文

难选菱铁矿流态化预氧化-低温还原磁化焙烧

  • 通讯作者:

    孙昊延    E-mail: sunhaoyan@ipe.ac.cn

文章亮点

  • (1) 揭示了菱铁矿流态化直接还原焙烧会生成弱磁性浮氏体的现象。
  • (2) 研究明晰了菱铁矿预氧化行为及其产物相还原机制。
  • (3) 建立了菱铁矿流态化预氧化-低温还原磁化焙烧高效物相转化方案。
  • 磁化焙烧–弱磁选联合工艺是目前实现低品位难选铁矿高效铁资源富集利用的最有效工业化方案之一。菱铁矿(碳酸亚铁)和赤铁矿(三氧化二铁)是两种主要弱磁性难选含铁矿物,菱铁矿在常规工业化赤铁矿还原磁化焙烧条件下会生成弱磁性浮氏体,进而降低磁性物相转化率和最终弱磁选精矿铁元素收得率。对此,本文提出了菱铁矿流态化预氧化–低温还原的磁化焙烧高效物相转化方案,并以低品位陕西菱铁矿为样品进行了系统研究。研究发现,菱铁矿在快速预氧化过程中会生成弱磁性和强磁性三氧化二铁两种铁氧化物,其中强磁性三氧化二铁500–550℃还原焙烧产物除工艺目标物相强磁性四氧化三铁外,还有部分由不稳定四氧化三铁被进一步还原生成的弱磁性浮氏体。预氧化产物只有在更低温度还原焙烧才能实现目标四氧化三铁产物相的稳定存在,优化的菱铁矿流态化快速焙烧完全磁化转变工艺参数为610℃预氧化2.5 min再低温450℃还原焙烧5 min,菱铁矿经此条件磁化焙烧后磨矿弱磁选分离能够达到精矿铁含量62.0wt%、铁元素收得率88.36%的优良指标,相比常规直接还原焙烧铁元素收得率大幅提高34.33%,可以实现低品位难选菱铁矿的高效物相转化资源利用。本文提出的预氧化-低温还原焙烧方案也具有适用于菱铁矿–赤铁矿共伴生铁矿全范围含量比例共磁化焙烧的特点。
  • Research Article

    Fluidized magnetization roasting of refractory siderite-containing iron ore via preoxidation–low-temperature reduction

    + Author Affiliations
    • Magnetization roasting is one of the most effective way of utilizing low-grade refractory iron ore. However, the reduction roasting of siderite (FeCO3) generates weakly magnetic wüstite, thus reducing iron recovery via weak magnetic separation. We systematically studied and proposed the fluidized preoxidation–low-temperature reduction magnetization roasting process for siderite. We found that the maghemite generated during the air oxidation roasting of siderite would be further reduced into wüstite at 500 and 550°C due to the unstable intermediate product magnetite (Fe3O4). Stable magnetite can be obtained through maghemite reduction only at low temperature. The optimal fluidized magnetization roasting parameters included preoxidation at 610°C for 2.5 min, followed by reduction at 450°C for 5 min. For roasted ore, weak magnetic separation yielded an iron ore concentrate grade of 62.0wt% and an iron recovery rate of 88.36%. Compared with that of conventional direct reduction magnetization roasting, the iron recovery rate of weak magnetic separation had greatly improved by 34.33%. The proposed fluidized preoxidation–low-temperature reduction magnetization roasting process can realize the efficient magnetization roasting utilization of low-grade refractory siderite-containing iron ore without wüstite generation and is unlimited by the proportion of siderite and hematite in iron ore.
    • loading
    • [1]
      World Steel Association, 2022 World Steel in Figures, World Steel Association, 2022.
      [2]
      J.W. Yu, Y.X. Han, Y.J. Li, and P. Gao, Growth behavior of the magnetite phase in the reduction of hematite via a fluidized bed, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1231. doi: 10.1007/s12613-019-1868-8
      [3]
      S.K. Roy, D. Nayak, and S.S. Rath, A review on the enrichment of iron values of low-grade iron ore resources using reduction roasting-magnetic separation, Powder Technol., 367(2020), p. 796. doi: 10.1016/j.powtec.2020.04.047
      [4]
      Y.J. Li, Q. Zhang, S. Yuan, and H. Yin, High-efficiency extraction of iron from early iron tailings via the suspension roasting-magnetic separation, Powder Technol., 379(2021), p. 466. doi: 10.1016/j.powtec.2020.10.005
      [5]
      X.R. Zhu, Y.X. Han, Y.S. Sun, P. Gao, and Y.J. Li, Thermal decomposition of siderite ore in different flowing atmospheres: Phase transformation and magnetism, Miner. Process. Extr. Metall. Rev, 44(2023), No.3, p. 201. doi: 10.1080/08827508.2022.2040498
      [6]
      V.P. Ponomar, N.O. Dudchenko, and A.B. Brik, Synthesis of magnetite powder from the mixture consisting of siderite and hematite iron ores, Miner. Eng., 122(2018), p. 277. doi: 10.1016/j.mineng.2018.04.018
      [7]
      Q. Zhang, Y.S. Sun, Y.X. Han, and Y.J. Li, Pyrolysis behavior of a green and clean reductant for suspension magnetization roasting, J. Clean. Prod., 268(2020), art. No. 122173. doi: 10.1016/j.jclepro.2020.122173
      [8]
      Y.H. Luo, D.Q. Zhu, J. Pan, and X.L. Zhou, Thermal decomposition behaviour and kinetics of Xinjiang siderite ore, Miner. Process. Extr. Metall., 125(2016), No. 1, p. 17. doi: 10.1080/03719553.2015.1118213
      [9]
      Y.J. Li, G. Yang, R.C. Zhao, Y.X. Han, and S. Yuan, Feature of refractory iron ore containing siderite and its research trends of beneficiation technology, Multipurp. Util. Miner. Resour., 2015, No. 2, p. 12.
      [10]
      C.Q. Hu, Y.F. He, D.F. Liu, et al., Advances in mineral processing technologies related to iron, magnesium, and lithium, Rev. Chem. Eng., 36(2019), No. 1, p. 107. doi: 10.1515/revce-2017-0053
      [11]
      Z.D. Tang, H.X. Xiao, Y.S. Sun, P. Gao, and Y.H. Zhang, Exploration of hydrogen-based suspension magnetization roasting for refractory iron ore towards a carbon-neutral future: A pilot-scale study, Int. J. Hydrogen Energy, 47(2022), No. 33, p. 15074. doi: 10.1016/j.ijhydene.2022.02.219
      [12]
      S. Yuan, R.F. Wang, P. Gao, Y.X. Han, and Y.J. Li, Suspension magnetization roasting on waste ferromanganese ore: A semi-industrial test for efficient recycling of value minerals, Powder Technol., 396(2022), p. 80. doi: 10.1016/j.powtec.2021.10.048
      [13]
      X.L. Zhang, Y.X. Han, Y.S. Sun, and Y.J. Li, Innovative utilization of refractory iron ore via suspension magnetization roasting: A pilot-scale study, Powder Technol., 352(2019), p. 16. doi: 10.1016/j.powtec.2019.04.042
      [14]
      X.Y. Liu, Y.F. Yu, and W. Chen, Research on flash magnetizing roasting-magnetic separation for Daxigou siderite, Met. Mine, 39(2009), No. 10, p. 84.
      [15]
      Q.S. Zhu and H.Z. Li, Status quo and development prospect of magnetizing roasting via fluidized bed for low grade iron ore, CIESC J., 65(2014), No. 7, p. 2437.
      [16]
      A.A. Adetoro, H.Y. Sun, S.Y. He, Q.S. Zhu, and H.Z. Li, Effects of low-temperature pre-oxidation on the titanomagnetite ore structure and reduction behaviors in a fluidized bed, Metall. Mater. Trans. B, 49(2018), No. 2, p. 846. doi: 10.1007/s11663-018-1193-z
      [17]
      H.M. Na, J.C. Sun, Z.Y. Qiu, et al., A novel evaluation method for energy efficiency of process industry–A case study of typical iron and steel manufacturing process, Energy, 233(2021), art. No. 121081. doi: 10.1016/j.energy.2021.121081
      [18]
      J.W. Yu, Y.F. Li, Y. Lv, Y.X. Han, and P. Gao, Recovery of iron from high-iron red mud using suspension magnetization roasting and magnetic separation, Miner. Eng., 178(2022), art. No. 107394. doi: 10.1016/j.mineng.2022.107394
      [19]
      Z.D. Tang, Q. Zhang, Y.S. Sun, P. Gao, and Y.X. Han, Pilot-scale extraction of iron from flotation tailings via suspension magnetization roasting in a mixture of CO and H2 followed by magnetic separation, Resour. Conserv. Recycl., 172(2021), art. No. 105680. doi: 10.1016/j.resconrec.2021.105680
      [20]
      S. Yuan, W.T. Zhou, Y.X. Han, and Y.J. Li, Efficient enrichment of iron concentrate from iron tailings via suspension magnetization roasting and magnetic separation, J. Mater. Cycles Waste Manage., 22(2020), No. 4, p. 1152. doi: 10.1007/s10163-020-01009-2
      [21]
      Z.D. Tang, P. Gao, Y.J. Li, et al., Recovery of iron from hazardous tailings using fluidized roasting coupling technology, Powder Technol., 361(2020), p. 591. doi: 10.1016/j.powtec.2019.11.074
      [22]
      M. Gheisari, M. Mozaffari, M. Acet, and J. Amighian, Preparation and investigation of magnetic properties of wüstite nanoparticles, J. Magn. Magn. Mater., 320(2008), No. 21, p. 2618. doi: 10.1016/j.jmmm.2008.05.028
      [23]
      S. Yuan, H.X. Xiao, T.Y. Yu, Y.J. Li, and P. Gao, Enhanced removal of iron minerals from high-iron bauxite with advanced roasting technology for enrichment of aluminum, Powder Technol., 372(2020), p. 1. doi: 10.1016/j.powtec.2020.05.112
      [24]
      V.P. Ponomar, M.M. Bagmut, E.A. Kalinichenko, and A.B. Brik, Experimental study on oxidation of synthetic and natural magnetites monitored by magnetic measurements, J. Alloys Compd., 848(2020), art. No. 156374. doi: 10.1016/j.jallcom.2020.156374
      [25]
      W. Kim, C.Y. Suh, S.W. Cho, et al., A new method for the identification and quantification of magnetite-maghemite mixture using conventional X-ray diffraction technique, Talanta, 94(2012), p. 348. doi: 10.1016/j.talanta.2012.03.001
      [26]
      F.J. Gotor, M. Macías, A. Ortega, and J.M. Criado, Comparative study of the kinetics of the thermal decomposition of synthetic and natural siderite samples, Phys. Chem. Min., 27(2000), No. 7, p. 495. doi: 10.1007/s002690000093
      [27]
      H. Shokrollahi, A review of the magnetic properties, synthesis methods and applications of maghemite, J. Magn. Magn. Mater., 426(2017), p. 74. doi: 10.1016/j.jmmm.2016.11.033
      [28]
      B. Weiss, J. Sturn, F. Winter, and J.L. Schenk, Empirical reduction diagrams for reduction of iron ores with H2 and CO gas mixtures considering non-stoichiometries of oxide phases, Ironmaking Steelmaking, 36(2009), No. 3, p. 212. doi: 10.1179/174328108X380645
      [29]
      V.P. Romanov, L.F. Checherskaya, and P.A. Tatsienko, Peculiarities of wustite formed below 570℃, Phys. Status Solidi A, 15(1973), No. 2, p. 721. doi: 10.1002/pssa.2210150244
      [30]
      A. Pineau, N. Kanari, and I. Gaballah, Kinetics of reduction of iron oxides by H2, Thermochim. Acta, 447(2006), No. 1, p. 89. doi: 10.1016/j.tca.2005.10.004
      [31]
      P.K. Gallagher and S. St J Warne, Thermomagnetometry and thermal decomposition of siderite, Thermochim. Acta, 43(1981), No. 3, p. 253. doi: 10.1016/0040-6031(81)85183-0

    Catalog


    • /

      返回文章
      返回