Cite this article as: |
Huazhe Jiao, Wenbo Yang, Zhu’en Ruan, Jianxin Yu, Juanhong Liu, and Yixuan Yang, Microscale mechanism of tailing thickening in metal mines, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1538-1547. https://doi.org/10.1007/s12613-022-2587-0 |
阮竹恩 E-mail: ustb_ruanzhuen@hotmail.com
Supplementary Information-s12613-022-2587-0.docx |
[1] |
M.N. Uugwanga and N.A. Kgabi, Heavy metal pollution index of surface and groundwater from around an abandoned mine site, Klein Aub, Phys. Chem. Earth Parts A/B/C, 124(2021), art. No. 103067. doi: 10.1016/j.pce.2021.103067
|
[2] |
Y. Vasquez, C.M. Neculita, G. Caicedo, et al., Passive multi-unit field-pilot for acid mine drainage remediation: Performance and environmental assessment of post-treatment solid waste, Chemosphere, 291(2022), art. No. 133051. doi: 10.1016/j.chemosphere.2021.133051
|
[3] |
P. Mazumder, A. Das, M. Khwairakpam, and A.S. Kalamdhad, A comprehensive insight into ecological risk assessment and remediation of metal contaminated coal mine soil: Towards a cleaner and sustainable environment, J. Cleaner Prod., 324(2021), art. No. 129185. doi: 10.1016/j.jclepro.2021.129185
|
[4] |
A.X. Wu, Z.E. Ruan, and J.D. Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 717. doi: 10.1007/s12613-022-2423-6
|
[5] |
Q.S. Chen, S.Y. Sun, Y.K. Liu, C.C. Qi, H.B. Zhou, and Q.L. Zhang, Immobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfill, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1440. doi: 10.1007/s12613-021-2274-6
|
[6] |
H.Z. Jiao, W.L. Chen, A.X. Wu, et al., Flocculated unclassified tailings settling efficiency improvement by particle collision optimization in the feedwell, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2126. doi: 10.1007/s12613-021-2402-3
|
[7] |
H.Z. Jiao, Y.C. Wu, H. Wang, et al., Micro-scale mechanism of sealed water seepage and thickening from tailings bed in rake shearing thickener, Miner. Eng., 173(2021), art. No. 107043. doi: 10.1016/j.mineng.2021.107043
|
[8] |
P. Ofori, A.V. Nguyen, B. Firth, C. McNally, and M.A. Hampton, The role of surface interaction forces and mixing in enhanced dewatering of coal preparation tailings, Fuel, 97(2012), p. 262. doi: 10.1016/j.fuel.2012.02.048
|
[9] |
M.S. Nasser and A.E. James, Effect of polyacrylamide polymers on floc size and rheological behaviour of kaolinite suspensions, Colloids Surf. A, 301(2007), No. 1-3, p. 311. doi: 10.1016/j.colsurfa.2006.12.080
|
[10] |
Q.S. Chen, L.M. Zhu, Y.M. Wang, J. Chen, and C.C. Qi, The carbon uptake and mechanical property of cemented paste backfill carbonation curing for low concentration of CO2, Sci. Total Environ., 852(2022), art. No. 158516. doi: 10.1016/j.scitotenv.2022.158516
|
[11] |
J.C. Winterwerp, A.J. Bale, M.C. Christie, et al., Flocculation and settling velocity of fine sediment, Proc. Mar. Sci., 5(2002), p. 25. doi: 10.1016/S1568-2692(02)80006-7
|
[12] |
L.H. Yang, H.J. Wang, H. Li, and X. Zhou, Effect of high mixing intensity on rheological properties of cemented paste backfill, Minerals, 9(2019), No. 4, art. No. 240. doi: 10.3390/min9040240
|
[13] |
Z.B. Wang, J. Nan, X.Y. Ji, and Y.M. Yang, Effect of the micro-flocculation stage on the flocculation/sedimentation process: The role of shear rate, Sci. Total Environ., 633(2018), p. 1183. doi: 10.1016/j.scitotenv.2018.03.286
|
[14] |
H.Z. Jiao, S.F. Wang, Y.X. Yang, and X.M. Chen, Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill, J. Cleaner Prod., 245(2020), art. No. 118882. doi: 10.1016/j.jclepro.2019.118882
|
[15] |
J. H. Qin, J. Zheng, and L. Li, An analytical solution to estimate the settlement of tailings or backfill slurry by considering the sedimentation and consolidation, Int. J. Min. Sci. Technol., 31(2021), No. 3, p. 463. doi: 10.1016/j.ijmst.2021.02.004
|
[16] |
H.J. Wang, Q.S. Peng, Y. Yang, and J.B. Guo. Research status and prospect of metal tailings thickening technology, Chin. J. Eng., 44(2022), No. 6, p. 971. doi: 10.13374/j.issn2095-9389.2021.01.11.001
|
[17] |
D. Ma, H.Y. Duan, J.X. Zhang, X.W. Liu, and Z.H. Li, Numerical simulation of water-silt inrush hazard of fault rock: A three-phase flow model, Rock Mech. Rock Eng., 55(2022), No. 8, p. 5163. doi: 10.1007/s00603-022-02878-9
|
[18] |
W. Sun, S.Y. Zhang, J.X. Li, and Z.Y. Li, Experimental study on energy dissipation of layered backfill under impact load, Constr. Build. Mater., 347(2022), art. No. 128478. doi: 10.1016/j.conbuildmat.2022.128478
|
[19] |
G.L. Zhang, P.G. Ranjith, M.S.A. Perera, A. Haque, X. Choi, and K.S.M. Sampath, Characterization of coal porosity and permeability evolution by demineralisation using image processing techniques: A micro-computed tomography study, J. Nat. Gas Sci. Eng., 56(2018), p. 384. doi: 10.1016/j.jngse.2018.06.020
|
[20] |
D. Zheng, W.D. Song, Y.Y. Tan, S. Cao, Z.L. Yang, and L.J. Sun, Fractal and microscopic quantitative characterization of unclassified tailings flocs, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1429. doi: 10.1007/s12613-020-2181-2
|
[21] |
S.Y. Li, C.Y. Qiao, Z.M. Li, and Y.T. Hui, The effect of permeability on supercritical CO2 diffusion coefficient and determination of diffusive tortuosity of porous media under reservoir conditions, J. CO2 Util., 28(2018), p. 1.
|
[22] |
K.Z. Zhang, S.L. Wang, L. Wang, et al., 3D visualization of tectonic coal microstructure and quantitative characterization on topological connectivity of pore-fracture networks by Micro-CT, J. Pet. Sci. Eng., 208(2022), art. No. 109675. doi: 10.1016/j.petrol.2021.109675
|
[23] |
I. Tretiak and R.A. Smith, A parametric study of segmentation thresholds for X-ray CT porosity characterisation in composite materials, Composites Part A, 123(2019), p. 10. doi: 10.1016/j.compositesa.2019.04.029
|
[24] |
H. Sazegaran and S.M.M. Nezhad, Cell morphology, porosity, microstructure and mechanical properties of porous Fe–C–P alloys, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 257. doi: 10.1007/s12613-020-1995-2
|
[25] |
F.B. Chen, B. Xu, H.Z. Jiao, et al., Triaxial mechanical properties and microstructure visualization of BFRC, Constr. Build. Mater., 278(2021), art. No. 122275. doi: 10.1016/j.conbuildmat.2021.122275
|
[26] |
G. Wang, X.J. Qin, D.Y. Han, and Z.Y. Liu, Study on seepage and deformation characteristics of coal microstructure by 3D reconstruction of CT images at high temperatures, Int. J. Min. Sci. Technol., 31(2021), No. 2, p. 175. doi: 10.1016/j.ijmst.2020.11.003
|
[27] |
X.M. Ni, J. Miao, R.S. Lv, and X.Y. Lin, Quantitative 3D spatial characterization and flow simulation of coal macropores based on μCT technology, Fuel, 200(2017), p. 199. doi: 10.1016/j.fuel.2017.03.068
|
[28] |
R. Nemati, J.R. Shahrouzi, and R. Alizadeh, A stochastic approach for predicting tortuosity in porous media via pore network modeling, Comput. Geotech., 120(2020), art. No. 103406. doi: 10.1016/j.compgeo.2019.103406
|
[29] |
M. Bankim, V.P.G. Vikram, and T.N.S. Ranjith, An insight into pore-network models of high-temperature heat-treated sandstones using computed tomography, J. Nat. Gas Sci. Eng., 77(2020), art. No. 103227. doi: 10.1016/j.jngse.2020.103227
|
[30] |
S. Babaei, S.C. Seetharam, A. Dizier, G. Steenackers, and B. Craeye, Permeability of cementitious materials using a multiscale pore network model, Constr. Build. Mater., 312(2021), art. No. 125298. doi: 10.1016/j.conbuildmat.2021.125298
|
[31] |
C.Z. Qin, and V.B. Harald, A dynamic pore-network model for spontaneous imbibition in porous media, Adv. Water Resour., 133(2019), art. No. 103420. doi: 10.1016/j.advwatres.2019.103420
|
[32] |
J. Yao, W.H. Song, D.Y. Wang, H. Sun, and Y. Li, Multi-scale pore network modelling of fluid mass transfer in nano-micro porous media, Int. J. Heat Mass Transfer, 141(2019), p. 156. doi: 10.1016/j.ijheatmasstransfer.2019.06.077
|
[33] |
M.P.P.C. Santos and M.S. Carvalho, Pore network model for retrograde gas flow in porous media, J. Pet. Sci. Eng., 185(2020), art. No. 106635. doi: 10.1016/j.petrol.2019.106635
|
[34] |
T. Gao, W. Sun, Z. Liu, and H.Y. Cheng, Investigation on fracture characteristics and failure pattern of inclined layered cemented tailings backfill, Constr. Build. Mater., 343(2022), art. No. 128110. doi: 10.1016/j.conbuildmat.2022.128110
|
[35] |
Q.S. Chen, S. Sun, and Y. Wang, In-situ remediation of phosphogypsum in a cement-free pathway: Utilization of ground granulated blast furnace slag and NaOH pretreatment, Chemosphere, 313(2023), art. No. 137412. doi: 10.1016/j.chemosphere.2022.137412
|
[36] |
Q.X. Huang, Experimental research of overburden movement and subsurface water seeping in shallow seam mining, J. Univ. Sci. Technol. Beijing, 14(2007), No. 6, p. 483. doi: 10.1016/S1005-8850(07)60114-5
|
[37] |
M.S. Mehdi, O. Pouria, and N. Fatemeh, Salinity of injection water and its impact on oil recovery absolute permeability, residual oil saturation, interfacial tension and capillary pressure, Egypt. J. Pet, 26(2017), No. 2, p. 301. doi: 10.1016/j.ejpe.2016.05.003
|
[38] |
O.B. Rizvandi, X.Y. Miao, and H.L. Frandsen, Fast and stable approximation of laminar and turbulent flows in channels by Darcy’s Law, Alex. Eng. J., 60(2021), No. 2, p. 2155. doi: 10.1016/j.aej.2020.12.033
|
[39] |
H.T. Ran, B. Zheng, and Y.Q. Shang, A parallel finite element variational multiscale method for the Navier-Stokes equations with nonlinear slip boundary conditions, Appl. Numer. Math., 168(2021), p. 274. doi: 10.1016/j.apnum.2021.06.004
|
[40] |
L. Li, C.D. Ma, S.P. Hu, et al., Effect of the benzene ring of the dispersant on the rheological characteristics of coal-water slurry: Experiments and theoretical calculations, Int. J. Min. Sci. Technol., 31(2021), No. 3, p. 515. doi: 10.1016/j.ijmst.2021.02.001
|