Cite this article as: |
Hamed Mirzadeh, Surface metal-matrix composites based on AZ91 magnesium alloy via friction stir processing: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1278-1296. https://doi.org/10.1007/s12613-022-2589-y |
Hamed Mirzadeh E-mail: hmirzadeh@ut.ac.ir
[1] |
D. Bairagi and S. Mandal, A comprehensive review on biocompatible Mg-based alloys as temporary orthopaedic implants: Current status, challenges, and future prospects, J. Magnes. Alloys, 10(2022), No. 3, p. 627. doi: 10.1016/j.jma.2021.09.005
|
[2] |
A. Malik, U.M. Chaudry, K. Hamad, and T.S. Jun, Microstructure features and superplasticity of extruded, rolled and SPD-processed magnesium alloys: A short review, Metals, 11(2021), No. 11, art. No. 1766. doi: 10.3390/met11111766
|
[3] |
B. Pourbahari, H. Mirzadeh, and M. Emamy, Elucidating the effect of intermetallic compounds on the behavior of Mg–Gd–Al–Zn magnesium alloys at elevated temperatures, J. Mater. Res., 32(2017), No. 22, p. 4186. doi: 10.1557/jmr.2017.415
|
[4] |
N. Barri, A.R. Salasel, A. Abbasi, H. Mirzadeh, M. Emamy, and M. Malekan, A new intermetallic phase formation in Mg–Si–Ni magnesium-based in situ formed alloys, Vacuum, 164(2019), p. 349. doi: 10.1016/j.vacuum.2019.03.050
|
[5] |
Y. Yang, X.M. Xiong, J. Chen, X.D. Peng, D.L. Chen, and F.S. Pan, Research advances in magnesium and magnesium alloys worldwide in 2020, J. Magnes. Alloys, 9(2021), No. 3, p. 705. doi: 10.1016/j.jma.2021.04.001
|
[6] |
Z. Savaedi, H. Mirzadeh, R.M. Aghdam, and R. Mahmudi, Effect of grain size on the mechanical properties and bio-corrosion resistance of pure magnesium, J. Mater. Res. Technol., 19(2022), p. 3100. doi: 10.1016/j.jmrt.2022.06.048
|
[7] |
E. Gerashi, R. Alizadeh, and R. Mahmudi, Improved corrosion resistance and mechanical properties of biodegradable Mg–4Zn–xSr alloys: Effects of heat treatment, Sr additions, and multi-directional forging, J. Mater. Res. Technol., 20(2022), p. 3363. doi: 10.1016/j.jmrt.2022.08.072
|
[8] |
Z. Zareian, M. Emamy, M. Malekan, H. Mirzadeh, W.J. Kim, and A. Bahmani, Tailoring the mechanical properties of Mg–Zn magnesium alloy by calcium addition and hot extrusion process, Mater. Sci. Eng. A, 774(2020), art. No. 138929. doi: 10.1016/j.msea.2020.138929
|
[9] |
M. Golrang, M. Mobasheri, H. Mirzadeh, and M. Emamy, Effect of Zn addition on the microstructure and mechanical properties of Mg–0.5Ca–0.5RE magnesium alloy, J. Alloys Compd., 815(2020), art. No. 152380. doi: 10.1016/j.jallcom.2019.152380
|
[10] |
J.W. Cha, S.C. Jin, J.G. Jung, and S.H. Park, Effects of homogenization temperature on microstructure and mechanical properties of high-speed-extruded Mg–5Bi–3Al alloy, J. Magnes. Alloys, 10(2022), No. 10, p. 2833. doi: 10.1016/j.jma.2021.07.007
|
[11] |
H. Abedi, M. Emamy, J. Rassizadehghani, H. Mirzadeh, and M. Ra'ayatpour, Enhanced mechanical properties of as-cast rare earth bearing magnesium alloy via elevated-temperature homogenization, Mater. Today Commun., 31(2022), art. No. 103821. doi: 10.1016/j.mtcomm.2022.103821
|
[12] |
Ö. Ayer, Effect of Die parameters on the grain size, mechanical properties and fracture mechanism of extruded AZ31 magnesium alloys, Mater. Sci. Eng. A, 793(2020), art. No. 139887. doi: 10.1016/j.msea.2020.139887
|
[13] |
M. Razzaghi, H. Mirzadeh, and M. Emamy, Unraveling the effects of Zn addition and hot extrusion process on the microstructure and mechanical properties of as-cast Mg–2Al magnesium alloy, Vacuum, 167(2019), p. 214. doi: 10.1016/j.vacuum.2019.06.013
|
[14] |
J. Dutkiewicz, D. Kalita, W. Maziarz, and M. Faryna, Superplastic deformation of Mg–9Li–2Al–0.5Sc alloy after grain refinement by KoBo extrusion and cyclic forging, Arch. Civ. Mech. Eng., 20(2020), No. 4, p. 1.
|
[15] |
I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia, Particulate reinforced metal matrix composites—A review, J. Mater. Sci., 26(1991), No. 5, p. 1137. doi: 10.1007/BF00544448
|
[16] |
M. Maleki, H. Mirzadeh, and M. Emamy, Improvement of mechanical properties of in situ Mg–Si composites via Cu addition and hot working, J. Alloys Compd., 905(2022), art. No. 164176. doi: 10.1016/j.jallcom.2022.164176
|
[17] |
C.J. AnandhaKumar, S. Gopi, D.G. Mohan, and S. ShashiKumar, Predicting the ultimate tensile strength and wear rate of aluminium hybrid surface composites fabricated via friction stir processing using computational methods, J. Adhesion Sci. Technol., 36(2022), No. 16, p. 1707. doi: 10.1080/01694243.2021.1982237
|
[18] |
S.J. Chen, L. Wang, X.Q. Jiang, T. Yuan, W. Jiang, and Y.Y. Liu, Microstructure and mechanical properties of AZ31B Mg alloy fabricated by friction stir welding with pulse current, J. Manuf. Processes, 71(2021), p. 317. doi: 10.1016/j.jmapro.2021.09.031
|
[19] |
R.S. Mishra and Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R, 50(2005), No. 1-2, p. 1. doi: 10.1016/j.mser.2005.07.001
|
[20] |
A. Heidarzadeh, S. Mironov, R. Kaibyshev, et al., Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution, Prog. Mater. Sci., 117(2021), art. No. 100752. doi: 10.1016/j.pmatsci.2020.100752
|
[21] |
V. Patel, W.Y. Li, A. Vairis, and V. Badheka, Recent development in friction stir processing as a solid-state grain refinement technique: Microstructural evolution and property enhancement, Crit. Rev. Solid State Mater. Sci., 44(2019), No. 5, p. 378. doi: 10.1080/10408436.2018.1490251
|
[22] |
B. Sadeghi, M. Shamanian, F. Ashrafizadeh, P. Cavaliere, and A. Rizzo, Friction stir processing of spark plasma sintered aluminum matrix composites with bimodal micro- and nano-sized reinforcing Al2O3 particles, J. Manuf. Processes, 32(2018), p. 412. doi: 10.1016/j.jmapro.2018.03.013
|
[23] |
G. Moeini, S.V. Sajadifar, T. Wegener, et al., On the influence of build orientation on properties of friction stir welded Al–Si10Mg parts produced by selective laser melting, J. Mater. Res. Technol., 12(2021), p. 1446. doi: 10.1016/j.jmrt.2021.03.101
|
[24] |
D. Harwani, V. Badheka, V. Patel, W.Y. Li, and J. Andersson, Developing superplasticity in magnesium alloys with the help of friction stir processing and its variants - A review, J. Mater. Res. Technol., 12(2021), p. 2055. doi: 10.1016/j.jmrt.2021.03.115
|
[25] |
A.K. Srivastava, A.R. Dixit, M. Maurya, et al., 20th century uninterrupted growth in friction stir processing of lightweight composites and alloys, Mater. Chem. Phys., 266(2021), art. No. 124572. doi: 10.1016/j.matchemphys.2021.124572
|
[26] |
R.S. Mishra, Z.Y. Ma, and I. Charit, Friction stir processing: A novel technique for fabrication of surface composite, Mater. Sci. Eng. A, 341(2003), No. 1-2, p. 307. doi: 10.1016/S0921-5093(02)00199-5
|
[27] |
S. Bharti, N.D. Ghetiya, and K.M. Patel, A review on manufacturing the surface composites by friction stir processing, Mater. Manuf. Processes, 36(2021), No. 2, p. 135. doi: 10.1080/10426914.2020.1813897
|
[28] |
B.R. Sunil, G.P.K. Reddy, H. Patle, and R. Dumpala, Magnesium based surface metal matrix composites by friction stir processing, J. Magnes. Alloys, 4(2016), No. 1, p. 52. doi: 10.1016/j.jma.2016.02.001
|
[29] |
Z. Nasiri, M.S. Khorrami, H. Mirzadeh, and M. Emamy, Enhanced mechanical properties of as-cast Mg–Al–Ca magnesium alloys by friction stir processing, Mater. Lett., 296(2021), art. No. 129880. doi: 10.1016/j.matlet.2021.129880
|
[30] |
M.N. Avettand-Fènoël and A. Simar, A review about friction stir welding of metal matrix composites, Mater. Charact., 120(2016), p. 1. doi: 10.1016/j.matchar.2016.07.010
|
[31] |
W. Tang, X. Guo, J.C. McClure, L.E. Murr, and A. Nunes, Heat input and temperature distribution in friction stir welding, J. Mater. Process. Manuf. Sci., 7(1998), No. 2, p. 163. doi: 10.1106/55TF-PF2G-JBH2-1Q2B
|
[32] |
R. Rouzbehani, A.H. Kokabi, H. Sabet, M. Paidar, and O.O. Ojo, Metallurgical and mechanical properties of underwater friction stir welds of Al7075 aluminum alloy, J. Mater. Process. Technol., 262(2018), p. 239. doi: 10.1016/j.jmatprotec.2018.06.033
|
[33] |
F. Badkoobeh, H. Mostaan, M. Rafiei, H.R. Bakhsheshi-Rad, and F. Berto, Friction stir welding/processing of Mg-based alloys: A critical review on advancements and challenges, Materials, 14(2021), No. 21, art. No. 6726. doi: 10.3390/ma14216726
|
[34] |
Y.X. Huang, T.H. Wang, W.Q. Guo, L. Wan and S.X. Lv, Microstructure and surface mechanical property of AZ31 Mg/SiCp surface composite fabricated by direct friction stir processing, Mater. Des., 59(2014), p. 274. doi: 10.1016/j.matdes.2014.02.067
|
[35] |
A.I. Almazrouee, K.J. Al-Fadhalah, and S.N. Alhajeri, A new approach to direct friction stir processing for fabricating surface composites, Crystals, 11(2021), No. 6, art. No. 638. doi: 10.3390/cryst11060638
|
[36] |
J. Iwaszko and M. Sajed, Technological aspects of producing surface composites by friction stir processing—A review, J. Compos. Sci., 5(2021), No. 12, art. No. 323. doi: 10.3390/jcs5120323
|
[37] |
D. Sejani, W.Y. Li, and V. Patel, Stationary shoulder friction stir welding–low heat input joining technique: A review in comparison with conventional FSW and bobbin tool FSW, Crit. Rev. Solid State Mater. Sci., 47(2022), No. 6, p. 865. doi: 10.1080/10408436.2021.1935724
|
[38] |
V. Patel, W.Y. Li, and Y.X. Xu, Stationary shoulder tool in friction stir processing: A novel low heat input tooling system for magnesium alloy, Mater. Manuf. Processes, 34(2019), No. 2, p. 177. doi: 10.1080/10426914.2018.1544716
|
[39] |
V. Patel, W.Y. Li, J. Andersson, and N. Li, Enhancing grain refinement and corrosion behavior in AZ31B magnesium alloy via stationary shoulder friction stir processing, J. Mater. Res. Technol., 17(2022), p. 3150. doi: 10.1016/j.jmrt.2022.02.059
|
[40] |
V. Patel, W.Y. Li, and Q. Wen, Surface analysis of stationary shoulder friction stir processed AZ31B magnesium alloy, Mater. Sci. Technol., 35(2019), No. 5, p. 628. doi: 10.1080/02670836.2019.1570692
|
[41] |
W.Y. Li, P.L. Niu, S.R. Yan, V. Patel, and Q. Wen, Improving microstructural and tensile properties of AZ31B magnesium alloy joints by stationary shoulder friction stir welding, J. Manuf. Processes, 37(2019), p. 159. doi: 10.1016/j.jmapro.2018.11.014
|
[42] |
F. Yousefpour, R. Jamaati, and H.J. Aval, Effect of traverse and rotational speeds on microstructure, texture, and mechanical properties of friction stir processed AZ91 alloy, Mater. Charact., 178(2021), art. No. 111235. doi: 10.1016/j.matchar.2021.111235
|
[43] |
H.J. Sharahi, M. Pouranvari, and M. Movahedi, Strengthening and ductilization mechanisms of friction stir processed cast Mg–Al–Zn alloy, Mater. Sci. Eng. A, 781(2020), art. No. 139249. doi: 10.1016/j.msea.2020.139249
|
[44] |
A. Afsharnaderi, M. Lotfpour, H. Mirzadeh, M. Emamy, and M. Malekan, Enhanced mechanical properties of as-cast AZ91 magnesium alloy by combined RE–Sr addition and hot extrusion, Mater. Sci. Eng. A, 792(2020), art. No. 139817. doi: 10.1016/j.msea.2020.139817
|
[45] |
F. Ghorbani, M. Emamy, and H. Mirzadeh, Enhanced tensile properties of as-cast Mg–10Al magnesium alloy via strontium addition and hot working, Arch. Civ. Mech. Eng., 21(2021), No. 2, p. 1.
|
[46] |
H. Mirzadeh, A comparative study on the hot flow stress of Mg–Al–Zn magnesium alloys using a simple physically-based approach, J. Magnes. Alloys, 2(2014), No. 3, p. 225. doi: 10.1016/j.jma.2014.09.003
|
[47] |
S. Rathee, S. Maheshwari, A.N. Siddiquee, and M. Srivastava, A review of recent progress in solid state fabrication of composites and functionally graded systems via friction stir processing, Crit. Rev. Solid State Mater. Sci., 43(2018), No. 4, p. 334. doi: 10.1080/10408436.2017.1358146
|
[48] |
Q. Liu, Q.X. Ma, G.Q. Chen, et al., Enhanced corrosion resistance of AZ91 magnesium alloy through refinement and homogenization of surface microstructure by friction stir processing, Corros. Sci., 138(2018), p. 284. doi: 10.1016/j.corsci.2018.04.028
|
[49] |
F. Chai, F. Yan, W. Wang, Q.C. Lu, and X. Fang, Microstructures and mechanical properties of AZ91 alloys prepared by multi-pass friction stir processing, J. Mater. Res., 33(2018), No. 12, p. 1789. doi: 10.1557/jmr.2018.98
|
[50] |
P. Asadi, M.K.B. Givi, K. Abrinia, M. Taherishargh, and R. Salekrostam, Effects of SiC particle size and process parameters on the microstructure and hardness of AZ91/SiC composite layer fabricated by FSP, J. Mater. Eng. Perform., 20(2011), No. 9, p. 1554. doi: 10.1007/s11665-011-9855-x
|
[51] |
J. Iwaszko, K. Kudła, and K. Fila, Friction stir processing of the AZ91 magnesium alloy with SiC particles, Arch. Mater. Sci. Eng., 77(2016), No. 2, p. 85. doi: 10.5604/18972764.1225604
|
[52] |
P. Asadi, G. Faraji, A. Masoumi, and M.K.B. Givi, Experimental investigation of magnesium-base nanocomposite produced by friction stir processing: Effects of particle types and number of friction stir processing passes, Metall. Mater. Trans. A, 42(2011), No. 9, p. 2820. doi: 10.1007/s11661-011-0698-8
|
[53] |
M. Dadaei, H. Omidvar, B. Bagheri, M. Jahazi, and M. Abbasi, The effect of SiC/Al2O3 particles used during FSP on mechanical properties of AZ91 magnesium alloy, Int. J. Mater. Res., 105(2014), No. 4, p. 369. doi: 10.3139/146.111025
|
[54] |
B. Bagheri, M. Abbasi, A. Abdollahzadeh, and S.E. Mirsalehi, Effect of second-phase particle size and presence of vibration on AZ91/SiC surface composite layer produced by FSP, Trans. Nonferrous Met. Soc. China, 30(2020), No. 4, p. 905. doi: 10.1016/S1003-6326(20)65264-5
|
[55] |
Z. Savaedi, R. Motallebi, and H. Mirzadeh, A review of hot deformation behavior and constitutive models to predict flow stress of high-entropy alloys, J. Alloys Compd., 903(2022), art. No. 163964. doi: 10.1016/j.jallcom.2022.163964
|
[56] |
A.H. Ammouri, G. Kridli, G. Ayoub, and R.F. Hamade, Relating grain size to the Zener–Hollomon parameter for twin-roll-cast AZ31B alloy refined by friction stir processing, J. Mater. Process. Technol., 222(2015), p. 301. doi: 10.1016/j.jmatprotec.2015.02.037
|
[57] |
H. Mirzadeh, Developing constitutive equations of flow stress for hot deformation of AZ31 magnesium alloy under compression, torsion, and tension, Int. J. Mater. Form., 12(2019), No. 4, p. 643. doi: 10.1007/s12289-018-1440-5
|
[58] |
L. Commin, M. Dumont, J.E. Masse, and L. Barrallier, Friction stir welding of AZ31 magnesium alloy rolled sheets: Influence of processing parameters, Acta Mater., 57(2009), No. 2, p. 326. doi: 10.1016/j.actamat.2008.09.011
|
[59] |
H. Mirzadeh, High strain rate superplasticity via friction stir processing (FSP): A review, Mater. Sci. Eng. A, 819(2021), art. No. 141499. doi: 10.1016/j.msea.2021.141499
|
[60] |
C.I. Chang, C.J. Lee, and J.C. Huang, Relationship between grain size and Zener–Holloman parameter during friction stir processing in AZ31 Mg alloys, Scripta Mater., 51(2004), No. 6, p. 509. doi: 10.1016/j.scriptamat.2004.05.043
|
[61] |
K. Dehghani and A. Chabok, Dependence of Zener parameter on the nanograins formed during friction stir processing of interstitial free steels, Mater. Sci. Eng. A, 528(2011), No. 13-14, p. 4325. doi: 10.1016/j.msea.2011.02.069
|
[62] |
A.M. Jamili, A. Zarei-Hanzaki, H.R. Abedi, M. Mosayebi, R. Kocich, and L.Kunčická, Development of fresh and fully recrystallized microstructures through friction stir processing of a rare earth bearing magnesium alloy, Mater. Sci. Eng. A, 775(2020), art. No. 138837. doi: 10.1016/j.msea.2019.138837
|
[63] |
B. Bagheri, M. Abbasi, A. Abdollahzadeh, and A.H. Kokabi, A comparative study between friction stir processing and friction stir vibration processing to develop magnesium surface nanocomposites, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1133. doi: 10.1007/s12613-020-1993-4
|
[64] |
J. Iwaszko and K. Kudła, Microstructure, hardness, and wear resistance of AZ91 magnesium alloy produced by friction stir processing with air-cooling, Int. J. Adv. Manuf. Technol., 116(2021), No. 3-4, p. 1309. doi: 10.1007/s00170-021-07474-9
|
[65] |
J. Iwaszko, New trends in friction stir processing: Rapid cooling—A review, Trans. Indian Inst. Met., 75(2022), No. 7, p. 1681. doi: 10.1007/s12666-022-02552-2
|
[66] |
C. Rathinasuriyan, A. Mystica, R. Sankar, and V.S.S. Kumar, Experimental investigation of cooling medium on submerged friction stir processed AZ31 magnesium alloy, Mater. Today Proc., 46(2021), p. 3386. doi: 10.1016/j.matpr.2020.11.575
|
[67] |
V. Patel, W.Y. Li, X.C. Liu, et al., Tailoring grain refinement through thickness in magnesium alloy via stationary shoulder friction stir processing and copper backing plate, Mater. Sci. Eng. A, 784(2020), art. No. 139322. doi: 10.1016/j.msea.2020.139322
|
[68] |
J.L. Shang, L.M. Ke, F.C. Liu, F.Y. Lv, and L. Xing, Aging behavior of nano SiC particles reinforced AZ91D composite fabricated via friction stir processing, J. Alloys Compd., 797(2019), p. 1240. doi: 10.1016/j.jallcom.2019.04.280
|
[69] |
M. Rabiee, H. Mirzadeh, and A. Ataie, Processing of Cu–Fe and Cu–Fe–SiC nanocomposites by mechanical alloying, Adv. Powder Technol., 28(2017), No. 8, p. 1882. doi: 10.1016/j.apt.2017.04.023
|
[70] |
T.J. Chen, Z.M. Zhu, Y. Ma, Y.D. Li, and Y. Hao, Friction stir processing of thixoformed AZ91D magnesium alloy and fabrication of surface composite reinforced by SiCps, J. Wuhan Univ. Technol. Mater. Sci. Ed., 25(2010), No. 2, p. 223. doi: 10.1007/s11595-010-2223-0
|
[71] |
W.B. Lee, C.Y. Lee, M.K. Kim, et al., Microstructures and wear property of friction stir welded AZ91 Mg/SiC particle reinforced composite, Compos. Sci. Technol., 66(2006), No. 11-12, p. 1513. doi: 10.1016/j.compscitech.2005.11.023
|
[72] |
M. Abbasi, B. Bagheri, M. Dadaei, H.R. Omidvar, and M. Rezaei, The effect of FSP on mechanical, tribological, and corrosion behavior of composite layer developed on magnesium AZ91 alloy surface, Int. J. Adv. Manuf. Technol., 77(2015), No. 9-12, p. 2051. doi: 10.1007/s00170-014-6577-x
|
[73] |
A. Abdollahzadeh, B. Bagheri, M. Abbasi, F. Sharifi, and A.O. Moghaddam, Mechanical, wear and corrosion behaviors of AZ91/SiC composite layer fabricated by friction stir vibration processing, Surf. Topogr.: Metrol. Prop., 9(2021), No. 3, art. No. 035038. doi: 10.1088/2051-672X/ac2176
|
[74] |
G. Faraji, O. Dastani, and S.A.A.A. Mousavi, Microstructures and mechanical properties of Al2O3/AZ91 surface nanocomposite layer produced by friction stir processing, Proc. Inst. Mech. Eng. B J. Eng. Manuf., 225(2011), No. 8, p. 1331. doi: 10.1177/2041297510393584
|
[75] |
G. Faraji, O. Dastani, and S.A.A.A. Mousavi, Effect of process parameters on microstructure and micro-hardness of AZ91/Al2O3 surface composite produced by FSP, J. Mater. Eng. Perform., 20(2011), No. 9, p. 1583. doi: 10.1007/s11665-010-9812-0
|
[76] |
D. Ahmadkhaniha, M.H. Sohi, A. Salehi, and R. Tahavvori, Formations of AZ91/Al2O3 nano-composite layer by friction stir processing, J. Magnes. Alloys, 4(2016), No. 4, p. 314. doi: 10.1016/j.jma.2016.11.002
|
[77] |
M. Soleimani, H. Mirzadeh, and C. Dehghanian, Processing route effects on the mechanical and corrosion properties of dual phase steel, Met. Mater. Int., 26(2020), No. 6, p. 882. doi: 10.1007/s12540-019-00459-0
|
[78] |
V.R. Vaira, R. Padmanaban, and M. Govindaraju, Synthesis and characterization of magnesium alloy surface composite (AZ91D–SiO2) by friction stir processing for bioimplants, Silicon, 12(2020), No. 5, p. 1085. doi: 10.1007/s12633-019-00194-6
|
[79] |
D. Khayyamin, A. Mostafapour, and R. Keshmiri, The effect of process parameters on microstructural characteristics of AZ91/SiO2 composite fabricated by FSP, Mater. Sci. Eng. A, 559(2013), p. 217. doi: 10.1016/j.msea.2012.08.084
|
[80] |
Z. Savaedi, H. Mirzadeh, R.M. Aghdam, and R. Mahmudi, Thermal stability, grain growth kinetics, mechanical properties, and bio-corrosion resistance of pure Mg, ZK30, and ZEK300 alloys: A comparative study, Mater. Today Commun., 33(2022), art. No. 104825. doi: 10.1016/j.mtcomm.2022.104825
|
[81] |
M.R. Zamani, H. Mirzadeh, M. Malekan, S.C. Cao, and J.W. Yeh, Grain growth in high-entropy alloys (HEAs): A review, High Entropy Alloys Mater., 2022. https://doi.org/10.1007/s44210-022-00002-8
|
[82] |
I. Dinaharan, N. Murugan, and E.T. Akinlabi, Friction stir processing route for metallic matrix composite production, [in] Encyclopedia of Materials: Composites, Vol. 2, Elsevier, Amsterdam, 2021, p. 702.
|
[83] |
M. Rezayat, M. Gharechomaghlu, H. Mirzadeh, and M.H. Parsa, A comprehensive approach for quantitative characterization and modeling of composite microstructures, Appl. Math. Model., 40(2016), No. 19-20, p. 8826. doi: 10.1016/j.apm.2016.05.023
|
[84] |
I. Dinaharan, S. Zhang, G.Q. Chen, and Q.Y. Shi, Development of titanium particulate reinforced AZ31 magnesium matrix composites via friction stir processing, J. Alloys Compd., 820(2020), art. No. 153071. doi: 10.1016/j.jallcom.2019.153071
|
[85] |
V. Sharma, Y. Gupta, B.V.M. Kumar, and U. Prakash, Friction stir processing strategies for uniform distribution of reinforcement in a surface composite, Mater. Manuf. Processes, 31(2016), No. 10, p. 1384. doi: 10.1080/10426914.2015.1103869
|
[86] |
I. Dinaharan, S. Zhang, G.Q. Chen, and Q.Y. Shi, Assessment of Ti–6Al–4V particles as a reinforcement for AZ31 magnesium alloy-based composites to boost ductility incorporated through friction stir processing, J. Magnes. Alloys, 10(2022), No. 4, p. 979. doi: 10.1016/j.jma.2020.09.026
|
[87] |
I. Dinaharan, S. Zhang, G.Q. Chen, and Q.Y. Shi, Titanium particulate reinforced AZ31 magnesium matrix composites with improved ductility prepared using friction stir processing, Mater. Sci. Eng. A, 772(2020), art. No. 138793. doi: 10.1016/j.msea.2019.138793
|
[88] |
W. Wang, P. Han, P. Peng, et al., Friction stir processing of magnesium alloys: A review, Acta Metall. Sin. Engl. Lett., 33(2020), No. 1, p. 43. doi: 10.1007/s40195-019-00971-7
|
[89] |
A.M. Desai, B.C. Khatri, V. Patel, and H. Rana, Friction stir welding of AZ31 magnesium alloy: A review, Mater. Today Proc., 47(2021), p. 6576. doi: 10.1016/j.matpr.2021.03.082
|
[90] |
P. Asadi, M.K.B. Givi, N. Parvin, A. Araei, M. Taherishargh, and S. Tutunchilar, On the role of cooling and tool rotational direction on microstructure and mechanical properties of friction stir processed AZ91, Int. J. Adv. Manuf. Technol., 63(2012), No. 9-12, p. 987. doi: 10.1007/s00170-012-3971-0
|
[91] |
K. Fuse, V. Badheka, V. Patel, and J. Andersson, Dual sided composite formation in Al6061/B4C using novel bobbin tool friction stir processing, J. Mater. Res. Technol., 13(2021), p. 1709. doi: 10.1016/j.jmrt.2021.05.079
|
[92] |
S. Rathee, S. Maheshwari, A.N. Siddiquee, and M. Srivastava, Effect of tool plunge depth on reinforcement particles distribution in surface composite fabrication via friction stir processing, Def. Technol., 13(2017), No. 2, p. 86. doi: 10.1016/j.dt.2016.11.003
|
[93] |
M. Balakrishnan, I. Dinaharan, R. Palanivel, and R. Sivaprakasam, Synthesize of AZ31/TiC magnesium matrix composites using friction stir processing, J. Magnes. Alloys, 3(2015), No. 1, p. 76. doi: 10.1016/j.jma.2014.12.007
|
[94] |
K. Wei, R. Hu, D.D. Yin, et al., Grain size effect on tensile properties and slip systems of pure magnesium, Acta Mater., 206(2021), art. No. 116604. doi: 10.1016/j.actamat.2020.116604
|
[95] |
H. Patle, B.R. Sunil, and R. Dumpala, Sliding wear behavior of AZ91/B4C surface composites produced by friction stir processing, Mater. Res. Express, 7(2020), No. 1, art. No. 016586. doi: 10.1088/2053-1591/ab6a55
|
[96] |
N. Singh, J. Singh, B. Singh, and N. Singh, Wear behavior of B4C reinforced AZ91 matrix composite fabricated by FSP, Mater. Today Proc., 5(2018), No. 9, p. 19976. doi: 10.1016/j.matpr.2018.06.364
|
[97] |
S. Vijayan, J.P.L. Gnanavel, G. Selvakumar, and S.R.K. Rao, Study on surface characteristics of friction stir processed AZ91 with titanium carbide micro particles, Indian J. Eng. Mater. Sci., 26(2019), No. 3-4, p. 205.
|
[98] |
B.N. Sahoo, M.D.F. Khan, S. Babu, S.K. Panigrahi, and G.D.J. Ram, Microstructural modification and its effect on strengthening mechanism and yield asymmetry of in situ TiC–TiB2/AZ91 magnesium matrix composite, Mater. Sci. Eng. A, 724(2018), p. 269. doi: 10.1016/j.msea.2018.03.060
|
[99] |
M.R. Moazami, A. Razaghian, H. Mirzadeh, M. Emamy, and A. Moharami, Tribological behavior of as-cast and wrought Al–Mg2Si hybrid composites reinforced by Ti-based intermetallics, J. Mater. Res. Technol., 20(2022), p. 1315. doi: 10.1016/j.jmrt.2022.07.142
|
[100] |
H.S. Arora, H. Singh, B.K. Dhindaw, and H.S. Grewal, Some investigations on friction stir processed zone of AZ91 alloy, Trans. Indian Inst. Met., 65(2012), No. 6, p. 735. doi: 10.1007/s12666-012-0219-5
|
[101] |
A. Afrinaldi, T. Kakiuchi, S. Nakagawa, et al., Fabrication of recycled carbon fiber reinforced magnesium alloy composite by friction stir processing using 3-flat pin tool and its fatigue properties, Mater. Trans., 59(2018), No. 3, p. 475. doi: 10.2320/matertrans.M2017297
|
[102] |
A.I. Mertens, A. Simar, H.M. Montrieux, J. Halleux, F. Delannay, and J. Lecomte-Beckers, Friction stir processing of magnesium matrix composites reinforced with carbon fibres: Influence of the matrix characteristics and of the processing parameters on microstructural developments, [in] 9th International Conference on Mgnesium Alloys and their Applications, Vancouver, 2012.
|
[103] |
F. Yousefpour, R. Jamaati, and H.J. Aval, Investigation of microstructure, crystallographic texture, and mechanical behavior of magnesium-based nanocomposite fabricated via multi-pass FSP for biomedical applications, J. Mech. Behav. Biomed. Mater., 125(2022), art. No. 104894. doi: 10.1016/j.jmbbm.2021.104894
|
[104] |
F. Yousefpour, R. Jamaati, and H.J. Aval, Synergistic effects of hybrid (HA+Ag) particles and friction stir processing in the design of a high-strength magnesium matrix bio-nano composite with an appropriate texture for biomedical applications, J. Mech. Behav. Biomed. Mater., 125(2022), art. No. 104983. doi: 10.1016/j.jmbbm.2021.104983
|
[105] |
I. Dinaharan and E.T. Akinlabi, Low cost metal matrix composites based on aluminum, magnesium and copper reinforced with fly ash prepared using friction stir processing, Compos. Commun., 9(2018), p. 22. doi: 10.1016/j.coco.2018.04.007
|
[106] |
I. Dinaharan, S.C. Vettivel, M. Balakrishnan, and E.T. Akinlabi, Influence of processing route on microstructure and wear resistance of fly ash reinforced AZ31 magnesium matrix composites, J. Magnes. Alloys, 7(2019), No. 1, p. 155. doi: 10.1016/j.jma.2019.01.003
|
[107] |
H. Patle, B.R. Sunil, and R. Dumpala, Machining characteristics, wear and corrosion behavior of AZ91 magnesium alloy–fly ash composites produced by friction stir processing, Materialwiss. Werkstofftech., 52(2021), No. 1, p. 88. doi: 10.1002/mawe.202000101
|
[108] |
M. Farghadani, F. Karimzadeh, M.H. Enayati, N. Naghshehkesh, and A.O. Moghaddam, Fabrication of AZ91D/Cu/Mg2Cu and AZ91D/Mg2Cu/MgCu2/MgO in situ hybrid surface nanocomposites via friction stir processing, Surf. Topogr.: Metrol. Prop., 8(2020), No. 4, art. No. 045002. doi: 10.1088/2051-672X/abb527
|
[109] |
N. Bhadouria, P. Kumar, L. Thakur, S. Dixit, and N. Arora, A study on micro-hardness and tribological behaviour of nano-WC–Co–Cr/multi-walled carbon nanotubes reinforced AZ91D magnesium matrix surface composites, Trans. Indian Inst. Met., 70(2017), No. 9, p. 2477. doi: 10.1007/s12666-017-1111-0
|
[110] |
C.I. Chang, Y.N. Wang, H.R. Pei, C.J. Lee, and J.C. Huang, On the hardening of friction stir processed Mg-AZ31 based composites with 5–20% nano-ZrO2 and nano-SiO2 particles, Mater. Trans., 47(2006), No. 12, p. 2942. doi: 10.2320/matertrans.47.2942
|
[111] |
M. Navazani and K. Dehghani, Fabrication of Mg–ZrO2 surface layer composites by friction stir processing, J. Mater. Process. Technol., 229(2016), p. 439. doi: 10.1016/j.jmatprotec.2015.09.047
|
[112] |
Y. Mazaheri, M.M. Jalilvand, A. Heidarpour, and A.R. Jahani, Tribological behavior of AZ31/ZrO2 surface nanocomposites developed by friction stir processing, Tribol. Int., 143(2020), art. No. 106062. doi: 10.1016/j.triboint.2019.106062
|
[113] |
Q.H. Zang, X.W. Li, H.M. Chen, et al., Microstructure and mechanical properties of AZ31/ZrO2 composites prepared by friction stir processing with high rotation speed, Front. Mater., 7(2020), art. No. 278. doi: 10.3389/fmats.2020.00278
|
[114] |
K. Qiao, T. Zhang, K.S. Wang, et al., Effect of multi-pass friction stir processing on the microstructure evolution and corrosion behavior of ZrO2/AZ31 magnesium matrix composite, J. Mater. Res. Technol., 18(2022), p. 1166. doi: 10.1016/j.jmrt.2022.02.127
|
[115] |
Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, MWCNTs/AZ31 surface composites fabricated by friction stir processing, Mater. Sci. Eng. A, 419(2006), No. 1-2, p. 344. doi: 10.1016/j.msea.2006.01.016
|
[116] |
M. Jamshidijam, A. Akbari-Fakhrabadi, S.M. Masoudpanah, G.H. Hasani, and R.V. Mangalaraja, Wear behavior of multiwalled carbon nanotube/AZ31 composite obtained by friction stir processing, Tribol. Trans., 56(2013), No. 5, p. 827. doi: 10.1080/10402004.2013.804969
|
[117] |
A.A. Nia and S.H. Nourbakhsh, Microstructure and mechanical properties of AZ31/SiC and AZ31/CNT composites produced by friction stir processing, Trans. Indian Inst. Met., 69(2016), No. 7, p. 1435. doi: 10.1007/s12666-015-0702-x
|
[118] |
S.M. Arab, S.M. Zebarjad, and S.A.J. Jahromi, Fabrication of AZ31/MWCNTs surface metal matrix composites by friction stir processing: Investigation of microstructure and mechanical properties, J. Mater. Eng. Perform., 26(2017), No. 11, p. 5366. doi: 10.1007/s11665-017-2763-y
|
[119] |
M. Tabandeh-Khorshid, A. Kumar, E. Omrani, C. Kim, and P. Rohatgi, Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites, Composites Part B, 183(2020), art. No. 107664. doi: 10.1016/j.compositesb.2019.107664
|
[120] |
Y.M. Xie, X.C. Meng Y.X. Huang, J.C. Li, and J. Cao, Deformation-driven metallurgy of graphene nanoplatelets reinforced aluminum composite for the balance between strength and ductility, Composites Part B, 177(2019), art. No. 107413. doi: 10.1016/j.compositesb.2019.107413
|
[121] |
N. Babu and A. Megalingam, Microstructural, mechanical and tribological characterization of ZrB2 reinforced AZ31B surface coatings made by friction stir processing, J. Adhesion Sci. Technol., 37(2023), No. 2, p. 195. doi: 10.1080/01694243.2022.2029093
|
[122] |
K.V. Reddy, R.B. Naik, G.R. Rao, G.M. Reddy, and R.A. Kumar, Microstructure and damping capacity of AA6061/graphite surface composites produced through friction stir processing, Compos. Commun., 20(2020), art. No. 100352. doi: 10.1016/j.coco.2020.04.018
|
[123] |
D.K. Sharma, V. Badheka, V. Patel, and G. Upadhyay, Recent developments in hybrid surface metal matrix composites produced by friction stir processing: A review, J. Tribol., 143(2021), No. 5, art. No. 050801. doi: 10.1115/1.4049590
|
[124] |
M.Y. Zhou, L.B. Ren, L.L. Fan, et al., Progress in research on hybrid metal matrix composites, J. Alloys Compd., 838(2020), art. No. 155274. doi: 10.1016/j.jallcom.2020.155274
|
[125] |
F. Khorasani, M. Emamy, M. Malekan, et al., Enhancement of the microstructure and elevated temperature mechanical properties of as-cast Mg–Al2Ca–Mg2Ca in situ composite by hot extrusion, Mater. Charact., 147(2019), p. 155. doi: 10.1016/j.matchar.2018.10.018
|
[126] |
S. Sharma, A. Handa, S.S. Singh, and D. Verma, Influence of tool rotation speeds on mechanical and morphological properties of friction stir processed nano hybrid composite of MWCNT–graphene–AZ31 magnesium, J. Magnes. Alloys, 7(2019), No. 3, p. 487. doi: 10.1016/j.jma.2019.07.001
|
[127] |
M.M. Jalilvand, and Y. Mazaheri, Effect of mono and hybrid ceramic reinforcement particles on the tribological behavior of the AZ31 matrix surface composites developed by friction stir processing, Ceram. Int., 46(2020), No. 12, p. 20345. doi: 10.1016/j.ceramint.2020.05.123
|
[128] |
D.H. Lu, Y.H. Jiang, and R. Zhou, Wear performance of nano-Al2O3 particles and CNTs reinforced magnesium matrix composites by friction stir processing, Wear, 305(2013), No. 1-2, p. 286. doi: 10.1016/j.wear.2012.11.079
|
[129] |
S. Rathee, S. Maheshwari, and A.N. Siddiquee, Issues and strategies in composite fabrication via friction stir processing: A review, Mater. Manuf. Processes, 33(2018), No. 3, p. 239. doi: 10.1080/10426914.2017.1303162
|
[130] |
R. Palanivel, P.K. Mathews, N. Murugan, and I. Dinaharan, Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys, Mater. Des., 40(2012), p. 7. doi: 10.1016/j.matdes.2012.03.027
|
[131] |
M. Lotfpour, A. Bahmani, H. Mirzadeh, et al., Effect of microalloying by Ca on the microstructure and mechanical properties of as-cast and wrought Mg–Mg2Si composites, Mater. Sci. Eng. A, 820(2021), art. No. 141574. doi: 10.1016/j.msea.2021.141574
|
[132] |
A.R. Salasel, A. Abbasi, N. Barri, H. Mirzadeh, M. Emamy, and M. Malekan, Effect of Si and Ni on microstructure and mechanical properties of in situ magnesium-based composites in the as-cast and extruded conditions, Mater. Chem. Phys., 232(2019), p. 305. doi: 10.1016/j.matchemphys.2019.04.079
|
[133] |
R. Taghiabadi and A. Moharami, Mechanical properties enhancement of Mg–4Si in situ composites by friction stir processing, Mater. Sci. Technol., 37(2021), No. 1, p. 66. doi: 10.1080/02670836.2020.1866848
|
[134] |
M. Raeissi and S.H. Nourbaksh, Enhancement of the microstructure homogeneity and mechanical performance of the as-cast Mg/Mg2Si in-situ composite through friction stir processing, Mater. Res. Express, 6(2019), No. 10, art. No. 1065e7. doi: 10.1088/2053-1591/ab40fd
|
[135] |
A. Srinivasan, S. Ningshen, U.K. Mudali, U.T.S. Pillai, and B.C. Pai, Influence of Si and Sb additions on the corrosion behavior of AZ91 magnesium alloy, Intermetallics, 15(2007), No. 12, p. 1511. doi: 10.1016/j.intermet.2007.05.012
|
[136] |
K.B. Nie, X.J. Wang, K.K. Deng, X.S. Hu, and K. Wu, Magnesium matrix composite reinforced by nanoparticles–A review, J. Magnes. Alloys, 9(2021), No. 1, p. 57. doi: 10.1016/j.jma.2020.08.018
|
[137] |
Z. Nasiri, H. Mirzadeh, M.S. Khorrami, and M. Emamy, Synergistic effects of alloying, homogenization, and hot extrusion on the mechanical properties of as-cast Mg–Al–Ca magnesium alloys, Arch. Civ. Mech. Eng., 21(2021), No. 3, art. No. 126. doi: 10.1007/s43452-021-00283-7
|
[138] |
M.S. Mehranpour, A. Heydarinia, M. Emamy, H. Mirzadeh, A. Koushki, and R. Razi, Enhanced mechanical properties of AZ91 magnesium alloy by inoculation and hot deformation, Mater. Sci. Eng. A, 802(2021), art. No. 140667. doi: 10.1016/j.msea.2020.140667
|
[139] |
H.H. Yu, Y.C. Xin, M.Y. Wang, and Q. Liu, Hall-Petch relationship in Mg alloys: A review, J. Mater. Sci. Technol., 34(2018), No. 2, p. 248. doi: 10.1016/j.jmst.2017.07.022
|
[140] |
T.G. Langdon, Seventy-five years of superplasticity: Historic developments and new opportunities, J. Mater. Sci., 44(2009), No. 22, p. 5998. doi: 10.1007/s10853-009-3780-5
|
[141] |
Z. Savaedi, R. Motallebi, H. Mirzadeh, and M. Malekan, Superplasticity of bulk metallic glasses (BMGs): A review, J. Non Cryst. Solids, 583(2022), art. No. 121503. doi: 10.1016/j.jnoncrysol.2022.121503
|
[142] |
R. Motallebi, Z. Savaedi, and H. Mirzadeh, Superplasticity of high-entropy alloys: A review, Arch. Civ. Mech. Eng., 22(2021), No. 1, p. 1.
|
[143] |
G. Giuliano, Superplastic Forming of Advanced Metallic Materials: Methods and Applications, Woodhead Publishing Limited, Cambridge, 2011.
|
[144] |
M. Sabbaghian and R. Mahmudi, Superplasticity of the fine-grained friction stir processed Mg–3Gd–1Zn sheets, Mater. Charact., 172(2021), art. No. 110902. doi: 10.1016/j.matchar.2021.110902
|
[145] |
M.M. Hoseini-Athar, R. Mahmudi, R.P. Babu, and P. Hedström, Microstructure and superplasticity of Mg–2Gd–xZn alloys processed by equal channel angular pressing, Mater. Sci. Eng. A, 808(2021), art. No. 140921. doi: 10.1016/j.msea.2021.140921
|
[146] |
A. Mohan, W. Yuan, and R.S. Mishra, High strain rate superplasticity in friction stir processed ultrafine grained Mg–Al–Zn alloys, Mater. Sci. Eng. A, 562(2013), p. 69. doi: 10.1016/j.msea.2012.11.026
|
[147] |
F. Chai, D.T. Zhang, Y.Y. Li, and W.W. Zhang, High strain rate superplasticity of a fine-grained AZ91 magnesium alloy prepared by submerged friction stir processing, Mater. Sci. Eng. A, 568(2013), p. 40. doi: 10.1016/j.msea.2013.01.026
|
[148] |
R.B. Figueiredo and T.G. Langdon, Strategies for achieving high strain rate superplasticity in magnesium alloys processed by equal-channel angular pressing, Scripta Mater., 61(2009), No. 1, p. 84. doi: 10.1016/j.scriptamat.2009.03.012
|
[149] |
R. Motallebi, Z. Savaedi, and H. Mirzadeh, Post-processing heat treatment of lightweight magnesium alloys fabricated by additive manufacturing: A review, J. Mater. Res. Technol., 20(2022), p. 1873. doi: 10.1016/j.jmrt.2022.07.154
|
[150] |
R. Motallebi, Z. Savaedi, and H. Mirzadeh, Additive manufacturing–A review of hot deformation behavior and constitutive modeling of flow stress, Curr. Opin. Solid State Mater. Sci., 26(2022), No. 3, art. No. 100992. doi: 10.1016/j.cossms.2022.100992
|
[151] |
H. Khodashenas and H. Mirzadeh, Post-processing of additively manufactured high-entropy alloys - A review, J. Mater. Res. Technol., 21(2022), p. 3795. doi: 10.1016/j.jmrt.2022.11.027
|
[152] |
K. Moeinfar, F. Khodabakhshi, S.F. Kashani-bozorg, M. Mohammadi, and A.P. Gerlich, A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys, and titanium alloys, J. Mater. Res. Technol., 16(2022), p. 1029. doi: 10.1016/j.jmrt.2021.12.039
|
[153] |
S. Rathee, M. Srivastava, P.M. Pandey, A. Mahawar, and S. Shukla, Metal additive manufacturing using friction stir engineering: A review on microstructural evolution, tooling and design strategies, CIRP J. Manuf. Sci. Technol., 35(2021), p. 560. doi: 10.1016/j.cirpj.2021.08.003
|
[154] |
Y.H. Ho, K. Man, S.S. Joshi, et al., In-vitro biomineralization and biocompatibility of friction stir additively manufactured AZ31B magnesium alloy–hydroxyapatite composites, Bioact. Mater., 5(2020), No. 4, p. 891. doi: 10.1016/j.bioactmat.2020.06.009
|