Cite this article as:

Hamed Mirzadeh, Surface metal-matrix composites based on AZ91 magnesium alloy via friction stir processing: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp.1278-1296. https://dx.doi.org/10.1007/s12613-022-2589-y
Hamed Mirzadeh, Surface metal-matrix composites based on AZ91 magnesium alloy via friction stir processing: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp.1278-1296. https://dx.doi.org/10.1007/s12613-022-2589-y
引用本文 PDF XML SpringerLink

AZ91镁合金搅拌摩擦表面金属基复合材料研究进展

摘要: 本综述介绍了AZ91镁合金的表面金属基复合材料(MMC)的搅拌摩擦加工(FSP),总结了有关各种增强颗粒的报道结果,包括碳化硅(SiC)、氧化铝(Al2O3)、石英(SiO2)、碳化硼(B4C)、碳化钛(TiC)、碳纤维、羟基磷灰石(HA)、原位形成相和混合增强材料。介绍了基于FSP的AZ91复合材料的制备方法,包括槽填充(开槽)、钻孔填充、夹层法、搅拌浇铸后FSP、原位颗粒形成等。讨论了引入第二相颗粒和FSP工艺参数(如刀具转速、横移速度和通道次数)对显微组织修饰、晶粒细化、颗粒分布均匀性、晶粒生长抑制、力学性能、强度–延性平衡、磨损/摩擦学行为和耐腐蚀性的影响。最后,对今后的工作提出了一些建议,包括重点研究超塑性和超塑性成形,基于搅拌摩擦工程的金属增材制造工艺(如增材摩擦搅拌沉积),直接FSP,静轴肩搅拌摩擦焊,动态再结晶(DRX)晶粒尺寸与类似热变形研究的Zener–Hollomon参数的相关性,工艺参数(如颗粒体积分数和外部冷却),以及常见的增强相,如ZrO2和碳纳米管。

 

Surface metal-matrix composites based on AZ91 magnesium alloy via friction stir processing: A review

Abstract: This monograph presents an overview of friction stir processing (FSP) of surface metal-matrix composites (MMCs) using the AZ91 magnesium alloy. The reported results in relation to various reinforcing particles, including silicon carbide (SiC), alumina (Al2O3), quartz (SiO2), boron carbide (B4C), titanium carbide (TiC), carbon fiber, hydroxyapatite (HA), in-situ formed phases, and hybrid reinforcements are summarized. AZ91 composite fabricating methods based on FSP are explained, including groove filling (grooving), drilled hole filling, sandwich method, stir casting followed by FSP, and formation of in-situ particles. The effects of introducing second-phase particles and FSP process parameters (e.g., tool rotation rate, traverse speed, and the number of passes) on the microstructural modification, grain refinement, homogeneity in the distribution of particles, inhibition of grain growth, mechanical properties, strength–ductility trade-off, wear/tribological behavior, and corrosion resistance are discussed. Finally, useful suggestions for future work are proposed, including focusing on the superplasticity and superplastic forming, metal additive manufacturing processes based on friction stir engineering (such as additive friction stir deposition), direct FSP, stationary shoulder FSP, correlation of the dynamic recrystallization (DRX) grain size with the Zener–Hollomon parameter similar to hot deformation studies, process parameters (such as the particle volume fraction and external cooling), and common reinforcing phases such as zirconia (ZrO2) and carbon nanotubes (CNTs).

 

/

返回文章
返回