留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 7
Jul.  2023

图(10)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  701
  • HTML全文浏览量:  286
  • PDF下载量:  50
  • 被引次数: 0
Blessy Babukutty, Deepalekshmi Ponnamma, Swapna S. Nair, Jiya Jose, Saritha G. Bhat,  and Sabu Thomas, Structural, magnetic and antibacterial properties of manganese-substituted magnetite ferrofluids, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1417-1426. https://doi.org/10.1007/s12613-022-2594-1
Cite this article as:
Blessy Babukutty, Deepalekshmi Ponnamma, Swapna S. Nair, Jiya Jose, Saritha G. Bhat,  and Sabu Thomas, Structural, magnetic and antibacterial properties of manganese-substituted magnetite ferrofluids, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1417-1426. https://doi.org/10.1007/s12613-022-2594-1
引用本文 PDF XML SpringerLink
研究论文

锰取代磁铁矿铁磁流体的结构、磁性和抗菌性能

  • 通讯作者:

    Deepalekshmi Ponnamma    E-mail: lekshmi_deepa@yahoo.com

  • 本文通过化学共沉淀法制备了MnxFe1−xFe2O4 (x = 0–0.8)锰取代磁铁矿铁磁流体(FFs)。FF纳米材料的抑菌活性的控制生长是具有挑战性的,因此,很少有关于该研究的报道。本文研究的重点是用四甲基氢氧化铵表面活性剂稳定水相FFs,以达到高均匀性。形态表征和结构研究中可以明显看出由化学反应和纳米晶体特性形成的5–11纳米纳米颗粒。根据Mn取代的含量,分析了Mn取代磁性FFs的结构、功能和抗菌性能。光学研究表明,Mn2+取代的MnxFe1−xFe2O4具有较高的蓝移,理论光学带隙与Mn含量密切相关。取代的FFs的超顺磁性质导致零矫顽力和剩磁,从而影响颗粒大小、阳离子分布和自旋倾斜。FFs的结构和功能性能与抑菌活性相关,研究最终表明MnxFe1−xFe2O4 FFs的抑菌区形成率最高。
  • Research Article

    Structural, magnetic and antibacterial properties of manganese-substituted magnetite ferrofluids

    + Author Affiliations
    • Manganese-substituted magnetite ferrofluids (FFs) MnxFe1−xFe2O4 (x = 0–0.8) were prepared in this work through a chemical co-precipitation reaction. The controlled growth of FF nanomaterials for antibacterial activities is challenging, and therefore, very few reports are available on the topic. This research focuses on stabilizing aqueous FFs with the tetramethylammonium hydroxide surfactant to achieve high homogeneity. Morphological characterization reveals nanoparticles of 5–11 nm formed by the chemical reaction and nanocrystalline nature, as evident from structural investigations. Mn-substituted magnetic FFs are analyzed for their structural, functional, and antibacterial performance according to the Mn-substituent content. Optical studies show a high blue shift for Mn2+-substituted MnxFe1−xFe2O4 with the theoretical correlation of optical band gaps with the Mn content. The superparamagnetic nature of substituted FFs causes zero coercivity and remanence, which consequently influence the particle size, cation distribution, and spin canting. The structural and functional performance of the FFs is correlated with the antibacterial activity, finally demonstrating the highest inhibition zone formation for MnxFe1−xFe2O4 FFs.
    • loading
    • [1]
      A. Sohail, M. Fatima, R. Ellahi, and K.B. Akram, A videographic assessment of ferrofluid during magnetic drug targeting: An application of artificial intelligence in nanomedicine, J. Mol. Liq., 285(2019), p. 47. doi: 10.1016/j.molliq.2019.04.022
      [2]
      D. Yuliantika, A. Taufiq, and E.G.R. Putra, Hierarchical structure and antibacterial activity of olive oil based MZFe2O4 ferrofluids, J. Phys.: Conf. Ser., 1436(2020), No. 1, art. No. 012145. doi: 10.1088/1742-6596/1436/1/012145
      [3]
      W. Lin, B. Liu, H. Zhang, et al., Laser-induced thermal effect for tunable filter employing ferrofluid and fiber taper coupler, IEEE Photonics Technol. Lett., 27(2015), No. 22, p. 2339. doi: 10.1109/LPT.2015.2463743
      [4]
      M. Deng, C. Huang, D.H. Liu, W. Jin, and T. Zhu, All fiber magnetic field sensor with ferrofluid-filled tapered microstructured optical fiber interferometer, Opt. Express, 23(2015), No. 16, p. 20668. doi: 10.1364/OE.23.020668
      [5]
      Y. Grosu, A. Faik, I. Ortega-Fernández, and B. D'Aguanno, Natural magnetite for thermal energy storage: Excellent thermophysical properties, reversible latent heat transition and controlled thermal conductivity, Sol. Energy Mater. Sol. Cells, 161(2017), p. 170. doi: 10.1016/j.solmat.2016.12.006
      [6]
      X.S. Meng, X.Y. Qiu, J.W. Zhao, et al., Synthesis of ferrofluids using a chemically induced transition method and their characterization, Colloid Polym. Sci., 297(2019), No. 2, p. 297. doi: 10.1007/s00396-018-04462-6
      [7]
      M.E.F. Brollo, P.H. Flores, L. Gutiérrez, C. Johansson, D.F. Barber, and M.D.P. Morales, Magnetic properties of nanoparticles as a function of their spatial distribution on liposomes and cells, Phys. Chem. Chem. Phys., 20(2018), No. 26, p. 17829. doi: 10.1039/C8CP03016B
      [8]
      L.F. Hakim, J.L. Portman, M.D. Casper, and A.W. Weimer, Aggregation behavior of nanoparticles in fluidized beds, Powder Technol., 160(2005), No. 3, p. 149. doi: 10.1016/j.powtec.2005.08.019
      [9]
      A. Taufiq, F.N. Ikasari, N. Hidayat, et al., Dependence of PEO content in the preparation of Fe3O4/PEO/TMAH ferrofluids and their antibacterial activity, J. Polym. Res., 27(2020), No. 5, art. No. 117. doi: 10.1007/s10965-020-02100-w
      [10]
      R.M. Ahmed, M. Fadel, M.S. Hanafy, and M.A. Ibrahim, Characterization and dielectric properties of magnetic nanoparticles (ferrofluid) conjugated with chemotherapy drug for medical application, IOSR J. Appl. Phys., 6(2014), No. 1, p. 38. doi: 10.9790/4861-06123846
      [11]
      S. Rani and G.D. Varma, Superparamagnetism and metamagnetic transition in Fe3O4 nanoparticles synthesized via co-precipitation method at different pH, Physica B, 472(2015), p. 66. doi: 10.1016/j.physb.2015.05.016
      [12]
      A. Samavati and A.F. Ismail, Antibacterial properties of copper-substituted cobalt ferrite nanoparticles synthesized by co-precipitation method, Particuology, 30(2017), p. 158. doi: 10.1016/j.partic.2016.06.003
      [13]
      M.A. Ansari, A. Baykal, S. Asiri, and S. Rehman, Synthesis and characterization of antibacterial activity of spinel chromium-substituted copper ferrite nanoparticles for biomedical application, J. Inorg. Organomet. Polym. Mater., 28(2018), No. 6, p. 2316. doi: 10.1007/s10904-018-0889-5
      [14]
      M.A. Ansari, S. Akhtar, M.A. Rauf, et al., Sol–gel synthesis of Dy-substituted Ni0.4Cu0.2Zn0.4(Fe2−xDyx)O4 nano spinel ferrites and evaluation of their antibacterial, antifungal, antibiofilm and anticancer potentialities for biomedical application, Int. J. Nanomed., 16(2021), p. 5633. doi: 10.2147/IJN.S316471
      [15]
      C.W. Wang and C.J. Liang, Oxidative degradation of TMAH solution with UV persulfate activation, Chem. Eng. J., 254(2014), p. 472. doi: 10.1016/j.cej.2014.05.116
      [16]
      Y.J. Fan, P.D. Han, P. Liang, Y.P. Xing, Z. Ye, and S.X. Hu, Differences in etching characteristics of TMAH and KOH on preparing inverted pyramids for silicon solar cells, Appl. Surf. Sci., 264(2013), p. 761. doi: 10.1016/j.apsusc.2012.10.117
      [17]
      B. Babukutty, N. Kalarikkal, and S.S. Nair, Studies on structural, optical and magnetic properties of cobalt substituted magnetite fluids (CoxFe1−xFe2O4), Mater. Res. Express, 4(2017), No. 3, art. No. 035906. doi: 10.1088/2053-1591/aa628b
      [18]
      F. Qureshi, M. Nawaz, M.A. Ansari, et al., Synthesis of M-Ag3PO4, (M = Se, Ag, Ta) nanoparticles and their antibacterial and cytotoxicity study, Int. J. Mol. Sci., 23(2022), No. 19, art. No. 11403. doi: 10.3390/ijms231911403
      [19]
      J. Giri, P. Pradhan, V. Somani, et al., Synthesis and characterizations of water-based ferrofluids of substituted ferrites[Fe1−xBxFe2O4, B = Mn, Co (x = 0–1)] for biomedical applications, J. Magn. Magn. Mater., 320(2008), No. 5, p. 724. doi: 10.1016/j.jmmm.2007.08.010
      [20]
      R.V. Upadhyay, K.J. Davies, S. Wells, and S.W. Charles, Preparation and characterization of ultra-fine MnFe2O4 and MnxFe1−xFe2O4 spinel systems: I. particles, J. Magn. Magn. Mater., 132(1994), No. 1-3, p. 249. doi: 10.1016/0304-8853(94)90320-4
      [21]
      H. Hamad, M.A. El-Latif, A.E.H. Kashyout, W. Sadik, and M. Feteha, Synthesis and characterization of core–shell–shell magnetic (CoFe2O4–SiO2–TiO2) nanocomposites and TiO2 nanoparticles for the evaluation of photocatalytic activity under UV and visible irradiation, New J. Chem., 39(2015), No. 4, p. 3116. doi: 10.1039/C4NJ01821D
      [22]
      M. Ma, Y. Zhang, W. Yu, H.Y. Shen, H.Q. Zhang, and N. Gu, Preparation and characterization of magnetite nanoparticles coated by amino silane, Colloids Surf. A, 212(2003), No. 2-3, p. 219. doi: 10.1016/S0927-7757(02)00305-9
      [23]
      R. Govindasamy, M. Govindarasu, S.S. Alharthi, et al., Sustainable green synthesis of yttrium oxide (Y2O3) nanoparticles using Lantana camara leaf extracts: Physicochemical characterization, photocatalytic degradation, antibacterial, and anticancer potency, Nanomaterials, 12(2022), No. 14, art. No. 2393. doi: 10.3390/nano12142393
      [24]
      A.R.O. Rodrigues, J.M.F. Ramos, I.T. Gomes, et al., Magnetoliposomes based on manganese ferrite nanoparticles as nanocarriers for antitumor drugs, RSC Adv., 6(2016), No. 21, p. 17302. doi: 10.1039/C5RA27058H
      [25]
      M. Matzapetakis, N. Karligiano, A. Bino, et al., Manganese citrate chemistry: Syntheses, spectroscopic studies, and structural characterizations of novel mononuclear, water-soluble manganese citrate complexes, Inorg. Chem., 39(2000), No. 18, p. 4044. doi: 10.1021/ic9912631
      [26]
      F. Aguado, F. Rodriguez, and P. Núñez, Pressure-induced Jahn-Teller suppression and simultaneous high-spin to low-spin transition in the layered perovskite CsMnF4, Phys. Rev. B, 76(2007), No. 9, art. No. 094417. doi: 10.1103/PhysRevB.76.094417
      [27]
      M.Y. Rafique, L.Q. Pan, Q.U.A. Javed, et al., Growth of monodisperse nanospheres of MnFe2O4 with enhanced magnetic and optical properties, Chin. Phys. B, 22(2013), No. 10, art. No. 107101. doi: 10.1088/1674-1056/22/10/107101
      [28]
      M.A. Ansari and S.M.M. Asiri, Green synthesis, antimicrobial, antibiofilm and antitumor activities of superparamagnetic γ-Fe2O3 NPs and their molecular docking study with cell wall mannoproteins and peptidoglycan, Int. J. Biol. Macromol., 171(2021), p. 44. doi: 10.1016/j.ijbiomac.2020.12.162
      [29]
      N. Rajkumar, D. Umamahaeswari, and K. Ramachandran, Photoacoustics and magnetic studies of Fe3O4 nanoparticles, Int. J. Nanosci., 9(2010), No. 3, p. 243. doi: 10.1142/S0219581X10006685
      [30]
      D. Gherca, A. Pui, V. Nica, O. Caltun, and N. Cornei, Eco-environmental synthesis and characterization of nanophase powders of Co, Mg, Mn and Ni ferrites, Ceram. Int., 40(2014), No. 7, p. 9599. doi: 10.1016/j.ceramint.2014.02.036
      [31]
      N. Tran, A. Mir, D. Mallik, A. Sinha, S. Nayar, and T.J. Webster, Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus, Int. J. Nanomed., 5(2010), p. 277.
      [32]
      N. Sanpo, C.C. Berndt, C.E. Wen, and J. Wang, Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications, Acta Biomater., 9(2013), No. 3, p. 5830. doi: 10.1016/j.actbio.2012.10.037
      [33]
      R.K. Dutta, B.P. Nenavathu, M.K. Gangishetty, and A.R. Reddy, Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation, Colloids Surf. B, 94(2012), p. 143. doi: 10.1016/j.colsurfb.2012.01.046
      [34]
      L.L. Zhang, Y.H. Jiang, Y.L. Ding, M. Povey, and D. York, Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids), J. Nanopart. Res., 9(2007), No. 3, p. 479. doi: 10.1007/s11051-006-9150-1
      [35]
      M. Kooti, P. Kharazi, and H. Motamedi, Preparation, characterization, and antibacterial activity of CoFe2O4/polyaniline/Ag nanocomposite, J. Taiwan Inst. Chem. Eng., 45(2014), No. 5, p. 2698. doi: 10.1016/j.jtice.2014.04.006
      [36]
      D. Touati, Iron and oxidative stress in bacteria, Arch. Biochem. Biophys., 373(2000), No. 1, p. 1. doi: 10.1006/abbi.1999.1518
      [37]
      A. Taufiq, R.E. Saputro, H. Susanto, et al., Synthesis of Fe3O4/Ag nanohybrid ferrofluids and their applications as antimicrobial and antifibrotic agents, Heliyon, 6(2020), No. 12, art. No. e05813. doi: 10.1016/j.heliyon.2020.e05813
      [38]
      A. Taufiq, R.E. Saputro, D. Yuliantika, et al., Excellent antimicrobial performance of Co-doped magnetite double-layered ferrofluids fabricated from natural sand, J. King Saud Univ. Sci., 32(2020), No. 7, p. 3032. doi: 10.1016/j.jksus.2020.08.009
      [39]
      A. Taufiq, D. Yuliantika, S. Sunaryono, et al., Hierarchical structure and magnetic behavior of Zn-doped magnetite aqueous ferrofluids prepared from natural sand for antibacterial agents, An. Acad. Bras. Ciênc., 93(2021), No. 4, art. No. e20200774.
      [40]
      K. Elayakumar, A. Dinesh, A. Manikandan, et al., Structural, morphological, enhanced magnetic properties and antibacterial bio-medical activity of rare earth element (REE) cerium (Ce3+) doped CoFe2O4 nanoparticles, J. Magn. Magn. Mater., 476(2019), p. 157. doi: 10.1016/j.jmmm.2018.09.089
      [41]
      O. Cervantes, N. Casillas, P. Knauth, et al., An easily prepared ferrofluid with high power absorption density and low cytotoxicity for biomedical applications, Mater. Chem. Phys., 245(2020), art. No. 122752. doi: 10.1016/j.matchemphys.2020.122752

    Catalog


    • /

      返回文章
      返回