Cite this article as:

Blessy Babukutty, Deepalekshmi Ponnamma, Swapna S. Nair, Jiya Jose, Saritha G. Bhat, and Sabu Thomas, Structural, magnetic and antibacterial properties of manganese-substituted magnetite ferrofluids, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp.1417-1426. https://dx.doi.org/10.1007/s12613-022-2594-1
Blessy Babukutty, Deepalekshmi Ponnamma, Swapna S. Nair, Jiya Jose, Saritha G. Bhat, and Sabu Thomas, Structural, magnetic and antibacterial properties of manganese-substituted magnetite ferrofluids, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp.1417-1426. https://dx.doi.org/10.1007/s12613-022-2594-1
引用本文 PDF XML SpringerLink

锰取代磁铁矿铁磁流体的结构、磁性和抗菌性能

摘要: 本文通过化学共沉淀法制备了MnxFe1−xFe2O4 (x = 0–0.8)锰取代磁铁矿铁磁流体(FFs)。FF纳米材料的抑菌活性的控制生长是具有挑战性的,因此,很少有关于该研究的报道。本文研究的重点是用四甲基氢氧化铵表面活性剂稳定水相FFs,以达到高均匀性。形态表征和结构研究中可以明显看出由化学反应和纳米晶体特性形成的5–11纳米纳米颗粒。根据Mn取代的含量,分析了Mn取代磁性FFs的结构、功能和抗菌性能。光学研究表明,Mn2+取代的MnxFe1−xFe2O4具有较高的蓝移,理论光学带隙与Mn含量密切相关。取代的FFs的超顺磁性质导致零矫顽力和剩磁,从而影响颗粒大小、阳离子分布和自旋倾斜。FFs的结构和功能性能与抑菌活性相关,研究最终表明MnxFe1−xFe2O4 FFs的抑菌区形成率最高。

 

Structural, magnetic and antibacterial properties of manganese-substituted magnetite ferrofluids

Abstract: Manganese-substituted magnetite ferrofluids (FFs) MnxFe1−xFe2O4 (x = 0–0.8) were prepared in this work through a chemical co-precipitation reaction. The controlled growth of FF nanomaterials for antibacterial activities is challenging, and therefore, very few reports are available on the topic. This research focuses on stabilizing aqueous FFs with the tetramethylammonium hydroxide surfactant to achieve high homogeneity. Morphological characterization reveals nanoparticles of 5–11 nm formed by the chemical reaction and nanocrystalline nature, as evident from structural investigations. Mn-substituted magnetic FFs are analyzed for their structural, functional, and antibacterial performance according to the Mn-substituent content. Optical studies show a high blue shift for Mn2+-substituted MnxFe1−xFe2O4 with the theoretical correlation of optical band gaps with the Mn content. The superparamagnetic nature of substituted FFs causes zero coercivity and remanence, which consequently influence the particle size, cation distribution, and spin canting. The structural and functional performance of the FFs is correlated with the antibacterial activity, finally demonstrating the highest inhibition zone formation for MnxFe1−xFe2O4 FFs.

 

/

返回文章
返回