留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 6
Jun.  2023

图(6)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  486
  • HTML全文浏览量:  135
  • PDF下载量:  19
  • 被引次数: 0
Yunjie Liu, Yupeng Wu, Fuhai Guo, Yingming Liu, Shirong Zhao, Siqi Li, Weizhuo Yu, and Lanzhong Hao, Flexible broadband WS2/Si optical position-sensitive detector with high sensitivity and fast speed, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1217-1224. https://doi.org/10.1007/s12613-023-2600-2
Cite this article as:
Yunjie Liu, Yupeng Wu, Fuhai Guo, Yingming Liu, Shirong Zhao, Siqi Li, Weizhuo Yu, and Lanzhong Hao, Flexible broadband WS2/Si optical position-sensitive detector with high sensitivity and fast speed, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1217-1224. https://doi.org/10.1007/s12613-023-2600-2
引用本文 PDF XML SpringerLink
研究论文

具有高灵敏度和快速响应的WS2/Si异质结光敏型位置探测器件

  • 通讯作者:

    郝兰众    E-mail: haolanzhong@upc.edu.cn

文章亮点

  • (1) 研制出柔性WS2/Si异质结光敏型位置探测器。
  • (2) 系统深入研究了器件光电响应与位置探测特性。
  • (3) 利用界面模型阐明了器件工作机理。
  • 由于其优良的电输运和光吸收性能,Si半导体在研制高效光敏型位置探测器件领域获得了广泛关注和大量研究。然而,常规较大厚度(~200 μm)的晶体Si又同时具有较强的刚性和脆性等特征,无法进行弯曲操作,严重限制了它在新一代柔性光电子器件方面的应用。为此,本文报道了一种晶体Si的各向同性碱液刻蚀方法,加工形成了超薄柔性Si,并进一步采用磁控溅射技术在其表面沉积WS2薄膜,从而成功研制出一种柔性WS2/Si异质结光电位置探测器。得益于界面内建电场对载流子输运能力的促进作用,所制备器件在较宽光谱范围内(450~1350 nm)表现出了突出的位置敏感性能,其位置敏感度达到~539.8 mV·mm-1,响应时间仅2.3 μs。尤其是,所制备器件展现出了较强的柔性可特征:经过200个周期的弯曲后,器件性能无明显衰减。
  • Research Article

    Flexible broadband WS2/Si optical position-sensitive detector with high sensitivity and fast speed

    + Author Affiliations
    • Si-based optical position-sensitive detectors (PSDs) have stimulated the interest of researchers due to their wide range of practical applications. However, due to the rigidity and fragility of Si crystals, the applications of flexible PSDs have been limited. Therefore, we presented a flexible broadband PSD based on a WS2/Si heterostructure for the first time. A scalable sputtering method was used to deposit WS2 thin films onto the etched ultrathin crystalline Si surface. The fabricated flexible PSD device has a broad spectral response in the wavelength range of 450–1350 nm, with a high position sensitivity of ~539.8 mV·mm−1 and a fast response of 2.3 μs, thanks to the strong light absorption, the built-in electrical field at the WS2/Si interface, and facilitated transport. Furthermore, mechanical-bending tests revealed that after 200 mechanical-bending cycles, the WS2/Si PSDs have excellent mechanical flexibility, stability, and durability, demonstrating the great potential in wearable PSDs with competitive performance.
    • loading
    • Supplementary Information-s12613-023-2600-2.docx
    • [1]
      J.T. Wallmark, A new semiconductor photocell using lateral photoeffect, Proc. IRE, 45(1957), No. 4, p. 474. doi: 10.1109/JRPROC.1957.278435
      [2]
      N. Tabatabaie, M.H. Meynadier, R.E. Nahory, J.P. Harbison, and L.T. Florez, Large lateral photovoltaic effect in modulation-doped AlGaAs/GaAs heterostructures, Appl. Phys. Lett., 55(1989), No. 8, p. 792. doi: 10.1063/1.101762
      [3]
      J.P. Cascales, I. Martínez, D. Díaz, J.A. Rodrigo, and F.G. Aliev, Transient lateral photovoltaic effect in patterned metal-oxide-semiconductor films, Appl. Phys. Lett., 104(2014), No. 23, art. No. 231118. doi: 10.1063/1.4882701
      [4]
      S. Liu, C.Q. Yu, and H. Wang, Colossal lateral photovoltaic effect observed in metal-oxide-semiconductor structure of Ti/TiO2/Si, IEEE Electron Device Lett., 33(2012), No. 3, p. 414. doi: 10.1109/LED.2011.2181325
      [5]
      J.Y. Du, P.F. Zhu, P. Song, et al., Two-dimensional lateral photovoltaic effect in MOS structure of Ti–SiO2–Si, J. Phys. D: Appl. Phys., 54(2021), No. 40, art. No. 405105. doi: 10.1088/1361-6463/ac12f6
      [6]
      X.Y. Dong, D.Y. Zheng, J. Lu, Y.R. Niu, and H. Wang, Efficient hot electron extraction in Ag–Cu/TiO2 for high performance lateral photovoltaic effect, IEEE Electron Device Lett., 42(2021), No. 10, p. 1500. doi: 10.1109/LED.2021.3106740
      [7]
      S. Liu, H. Wang, Y.J. Yao, L. Chen, and Z.L. Wang, Lateral photovoltaic effect observed in nano Au film covered two-dimensional colloidal crystals, Appl. Phys. Lett., 104(2014), No. 11, art. No. 111110. doi: 10.1063/1.4869223
      [8]
      L. Du and H. Wang, Infrared laser induced lateral photovoltaic effect observed in Cu2O nanoscale film, Opt. Express, 18(2010), No. 9, p. 9113. doi: 10.1364/OE.18.009113
      [9]
      C.Q. Yu, H. Wang, S.Q. Xiao, and Y.X. Xia, Direct observation of lateral photovoltaic effect in nano-metal-films, Opt. Express, 17(2009), No. 24, p. 21712. doi: 10.1364/OE.17.021712
      [10]
      C. Xie, C. Mak, X.M. Tao, and F. Yan, Photodetectors based on two-dimensional layered materials beyond graphene, Adv. Funct. Mater., 27(2017), No. 19, art. No. 1603886. doi: 10.1002/adfm.201603886
      [11]
      H.H. Yu, Z.H. Cao, Z. Zhang, X.K. Zhang, and Y. Zhang, Flexible electronics and optoelectronics of 2D van der Waals materials, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 671. doi: 10.1007/s12613-022-2426-3
      [12]
      W.H. Wu, Q. Zhang, X. Zhou, et al., Self-powered photovoltaic photodetector established on lateral monolayer MoS2-WS2 heterostructures, Nano Energy, 51(2018), p. 45. doi: 10.1016/j.nanoen.2018.06.049
      [13]
      H.S. Kim, M. Patel, J. Kim, and M.S. Jeong, Growth of wafer-scale standing layers of WS2 for self-biased high-speed UV-visible-NIR optoelectronic devices, ACS Appl. Mater. Interfaces, 10(2018), No. 4, p. 3964. doi: 10.1021/acsami.7b16397
      [14]
      P. Gant, P. Huang, D. Pérez de Lara, D. Guo, R. Frisenda, and A. Castellanos-Gomez, A strain tunable single-layer MoS2 photodetector, Mater. Today, 27(2019), p. 8. doi: 10.1016/j.mattod.2019.04.019
      [15]
      J.X. Guo, S.D. Li, Z.B. He, et al., Near-infrared photodetector based on few-layer MoS2 with sensitivity enhanced by localized surface plasmon resonance, Appl. Surf. Sci., 483(2019), p. 1037. doi: 10.1016/j.apsusc.2019.04.044
      [16]
      J.W. Kang, C. Zhang, K.J. Cao, et al., High-performance light trajectory tracking and image sensing devices based on a γ-In2Se3/GaAs heterostructure, J. Mater. Chem. C, 8(2020), No. 39, p. 13762. doi: 10.1039/D0TC03872E
      [17]
      M.R. Ma, H.H. Chen, K.N. Zhou, et al., Multilayered PtSe2/pyramid-Si heterostructure array with light confinement effect for high-performance photodetection, image sensing and light trajectory tracking applications, J. Mater. Chem. C, 9(2021), No. 8, p. 2823. doi: 10.1039/D0TC05701K
      [18]
      R.D. Cong, S. Qiao, J.H. Liu, et al., Ultrahigh, ultrafast, and self-powered visible-near-infrared optical position-sensitive detector based on a CVD-prepared vertically standing few-layer MoS2/Si heterojunction, Adv. Sci., 5(2018), No. 2, art. No. 1700502. doi: 10.1002/advs.201700502
      [19]
      Y.T. Zheng, J.J. Wei, J.L. Liu, et al., Carbon materials: The burgeoning promise in electronics, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 404. doi: 10.1007/s12613-021-2358-3
      [20]
      C.S. Solanki, R.R. Bilyalov, J. Poortmans, J. Nijs, and R. Mertens, Porous silicon layer transfer processes for solar cells, Sol. Energy Mater. Sol. Cells, 83(2004), No. 1, p. 101. doi: 10.1016/j.solmat.2004.02.016
      [21]
      T.P. Jiao, D.P. Wei, J. Liu, et al., Flexible solar cells based on graphene-ultrathin silicon Schottky junction, RSC Adv., 5(2015), No. 89, p. 73202. doi: 10.1039/C5RA13488A
      [22]
      X.K. Li, M. Mariano, L. McMillon-Brown, et al., Charge transfer from carbon nanotubes to silicon in flexible carbon nanotube/silicon solar cells, Small, 13(2017), No. 48, art. No. 1702387. doi: 10.1002/smll.201702387
      [23]
      I. Hwang, H.D. Um, B.S. Kim, M. Wober, and K. Seo, Flexible crystalline silicon radial junction photovoltaics with vertically aligned tapered microwires, Energy Environ. Sci., 11(2018), No. 3, p. 641. doi: 10.1039/C7EE03340K
      [24]
      K.Q. Ruan, K. Ding, Y.M. Wang, et al., Flexible graphene/silicon heterojunction solar cells, J. Mater. Chem. A, 3(2015), No. 27, p. 14370. doi: 10.1039/C5TA03652F
      [25]
      S.Y. Saha, M.M. Hilali, E.U. Onyegam, et al., Single heterojunction solar cells on exfoliated flexible ~25 μm thick mono-crystalline silicon substrates, Appl. Phys. Lett., 102(2013), No. 16, art. No. 163904. doi: 10.1063/1.4803174
      [26]
      Y.J. Dai, X.F. Wang, W.B. Peng, et al., Self-powered Si/CdS flexible photodetector with broadband response from 325 to 1550 nm based on pyro-phototronic effect: An approach for photosensing below bandgap energy, Adv. Mater., 30(2018), No. 9, art. No. 1705893. doi: 10.1002/adma.201705893
      [27]
      D.H. Li, H. Zheng, Z.Y. Wang, et al., Dielectric functions and critical points of crystalline WS2 ultrathin films with tunable thickness, Phys. Chem. Chem. Phys., 19(2017), No. 19, p. 12022. doi: 10.1039/C7CP00660H
      [28]
      C.Y. Lan, C. Li, S. Wang, et al., Zener tunneling and photoresponse of a WS2/Si van der waals heterojunction, ACS Appl. Mater. Interfaces, 8(2016), No. 28, p. 18375. doi: 10.1021/acsami.6b05109
      [29]
      L.Z. Hao, H. Liu, H.Y. Xu, et al., Flexible Pd-WS2/Si heterojunction sensors for highly sensitive detection of hydrogen at room temperature, Sens. Actuators B, 283(2019), p. 740. doi: 10.1016/j.snb.2018.12.062
      [30]
      S. Liu, X. Xie, and H. Wang, Lateral photovoltaic effect and electron transport observed in Cr nano-film, Opt. Express, 22(2014), No. 10, p. 11627. doi: 10.1364/OE.22.011627
      [31]
      C. Hu, X.J. Wang, P. Miao, et al., Origin of the ultrafast response of the lateral photovoltaic effect in amorphous MoS2/Si junctions, ACS Appl. Mater. Interfaces, 9(2017), No. 21, p. 18362. doi: 10.1021/acsami.7b04298
      [32]
      S. Qiao, K.Y. Feng, Z. Li, G.S. Fu, and S.F. Wang, Ultrahigh, ultrafast and large response size visible-near-infrared optical position sensitive detectors based on CIGS structures, J. Mater. Chem. C, 5(2017), No. 20, p. 4915. doi: 10.1039/C7TC01462G
      [33]
      T.T. Xu, Y.P. Han, L. Lin, et al., Self-power position-sensitive detector with fast optical relaxation time and large position sensitivity basing on the lateral photovoltaic effect in tin diselenide films, J. Alloys Compd., 790(2019), p. 941. doi: 10.1016/j.jallcom.2019.03.293
      [34]
      S. Qiao, J.H. Chen, J.H. Liu, N. Fu, G.Y. Yan, and S.F. Wang, Distance-dependent lateral photovoltaic effect in a-Si:H(p)/a-Si:H(i)/c-Si(n) structure, Appl. Surf. Sci., 356(2015), p. 732. doi: 10.1016/j.apsusc.2015.08.144
      [35]
      Y. Yao, Z.W. Jin, Y.H. Chen, et al., Graphdiyne-WS2 2D-Nanohybrid electrocatalysts for high-performance hydrogen evolution reaction, Carbon, 129(2018), p. 228. doi: 10.1016/j.carbon.2017.12.024
      [36]
      X.J. Wang, B.Q. Song, M.X. Huo, et al., Fast and sensitive lateral photovoltaic effects in Fe3O4/Si Schottky junction, RSC Adv., 5(2015), No. 80, p. 65048. doi: 10.1039/C5RA11872G
      [37]
      Y.G. Du, Q.Z. Xue, Z.Y. Zhang, F.J. Xia, J.P. Li, and Z.D. Han, Hydrogen gas sensing properties of Pd/a-C:Pd/SiO2/Si structure at room temperature, Sens. Actuators B, 186(2013), p. 796. doi: 10.1016/j.snb.2013.06.067
      [38]
      P. Sharma, R. Bhardwaj, A. Kumar, and S. Mukherjee, Trap assisted charge multiplication enhanced photoresponse of Li–P codoped p-ZnO/n-Si heterojunction ultraviolet photodetectors, J. Phys. D: Appl. Phys., 51(2018), No. 1, art. No. 015103. doi: 10.1088/1361-6463/aa98fb
      [39]
      X.J. Wang, X.F. Zhao, C. Hu, et al., Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction, Appl. Phys. Lett., 109(2016), No. 2, art. No. 023502. doi: 10.1063/1.4955480
      [40]
      L.Z. Hao, Y.J. Liu, Z.D. Han, Z.J. Xu, and J. Zhu, Giant lateral photovoltaic effect in MoS2/SiO2/Si p-i-n junction, J. Alloys Compd., 735(2018), p. 88. doi: 10.1016/j.jallcom.2017.11.094
      [41]
      T. Yang, Y.P. Zheng, K.C. Chou, and X.M. Hou, Tunable fabrication of single-crystalline CsPbI3 nanobelts and their application as photodetectors, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 1030. doi: 10.1007/s12613-020-2173-2
      [42]
      J. Mao, Y.Q. Yu, L. Wang, et al., Ultrafast, broadband photodetector based on MoSe2/silicon heterojunction with vertically standing layered structure using graphene as transparent electrode, Adv. Sci., 3(2016), No. 11, art. No. 1600018. doi: 10.1002/advs.201600018
      [43]
      Y. Zhang, Y. Zhang, T. Yao, C. Hu, Y. Sui, and X.J. Wang, Ultrahigh position sensitivity and fast optical relaxation time of lateral photovoltaic effect in Sb2Se3/p-Si junctions, Opt. Express, 26(2018), No. 26, p. 34214. doi: 10.1364/OE.26.034214
      [44]
      S. Qiao, M.J. Chen, Y. Wang, et al., Ultrabroadband, large sensitivity position sensitivity detector based on a Bi2Te2.7Se0.3/Si heterojunction and its performance improvement by pyro-phototronic effect, Adv. Electron Mater., 5(2019), No. 12, art. No. 1900786. doi: 10.1002/aelm.201900786
      [45]
      T.H. Nguyen, T. Nguyen, A.R.M. Foisal, et al., Generation of a charge carrier gradient in a 3C–SiC/Si heterojunction with asymmetric configuration, ACS Appl. Mater. Interfaces, 13(2021), No. 46, p. 55329. doi: 10.1021/acsami.1c15942

    Catalog


    • /

      返回文章
      返回