留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 7
Jul.  2023

图(11)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1082
  • HTML全文浏览量:  312
  • PDF下载量:  76
  • 被引次数: 0
Xinyuan Zhang, Chenkang Xia, Weihai Liu, Mingyuan Hao, Yang Miao,  and Feng Gao, Microwave absorption and thermal properties of coral-like SiC aerogel composites prepared by water glass as a silicon source, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1375-1387. https://doi.org/10.1007/s12613-023-2605-x
Cite this article as:
Xinyuan Zhang, Chenkang Xia, Weihai Liu, Mingyuan Hao, Yang Miao,  and Feng Gao, Microwave absorption and thermal properties of coral-like SiC aerogel composites prepared by water glass as a silicon source, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1375-1387. https://doi.org/10.1007/s12613-023-2605-x
引用本文 PDF XML SpringerLink
研究论文

以水玻璃为硅源制备珊瑚状SiC气凝胶及吸波、隔热性能研究

  • 通讯作者:

    苗洋    E-mail: miaoyang198781@163.com

文章亮点

  • (1) 采用以工业级水玻璃以溶胶凝胶法制备出珊瑚状多孔结构的SiC气凝胶。
  • (2) 通过在溶胶凝胶过程中调节Si、C摩尔比,进而调控SiC气凝胶的组织结构和化学成分。
  • (3) 系统地研究了SiC气凝胶化学成分和组织结构对吸波、隔热性能的影响规律。
  • 电磁波吸收材料在军事、航空航天、通讯等领域有着广泛的应用。到目前为止,人们已经投入了大量的精力来开发具有强吸收、有效带宽和极薄特性的理想电磁波吸收材料。其中SiC气凝胶是轻质、耐高温吸波材料的研究热点。而目前制备SiC气凝胶均采用有机硅烷作为硅源,其成本昂贵并且具有毒性。本文使用水玻璃作为硅源成功制备了SiC气凝胶,通过在溶胶-凝胶过程中调节Si、C摩尔比,进而调控SiC气凝胶的组织结构和化学成分,并系统研究了化学成分和组织结构对微波吸收性能的影响。研究结果表明:SiC气凝胶吸波、隔热性能与其化学成分和组织结构密切相关,材料的损耗能力随着气凝胶中SiC晶相的增加而增加,气凝胶的多孔结构增加了材料内部对电磁波的反射,有助于提高材料的损耗能力。当Si/C摩尔比为1时,SiC气凝胶体系内作为结构支撑骨架的无定形SiO2和SiC达到了良好的平衡,在保持了气凝胶结构的同时生成了SiC,具有有效的电磁波吸收能力,在12.88 GHz处具有−46.30 dB的反射损耗值和4.02 GHz的有效频带宽度。同时还具有良好的物理性质,密度为0.0444 g/cm3,热导率为0.0621 W/(m·K),比表面积为1099 m2/g。这种具有电磁波吸收性能和低热导率的轻质材料可用作航天飞船和超音速飞行器的热防护材料。
  • Research Article

    Microwave absorption and thermal properties of coral-like SiC aerogel composites prepared by water glass as a silicon source

    + Author Affiliations
    • As a heat-resistant wave-absorbing material, silicon carbide (SiC) aerogel has become a research hotspot at present. However, the most common silicon sources are organosilanes, which are costly and toxic. In this work, SiC aerogels were successfully prepared by using water glass as the silicon source. Specifically, the microstructure and chemical composition of SiC aerogels were controlled by adjusting the Si to C molar ratio during the sol–gel process, and the effect on SiC aerogel microwave absorption properties was investigated. The SiC aerogels prepared with Si : C molar ratio of 1:1 have an effective electromagnetic wave absorption capacity, with a minimum reflection loss value of −46.30 dB at 12.88 GHz and an effective frequency bandwidth of 4.02 GHz. They also have good physical properties, such as the density of 0.0444 g/cm3, the thermal conductivity of 0.0621 W/(m·K), and the specific surface area of 1099 m2/g. These lightweight composites with microwave-absorbing properties and low thermal conductivity can be used as thermal protection materials for space shuttles and reusable carriers.
    • loading
    • [1]
      S. Kumar, A. Kumar, K. Sampath, et al., Fabrication and erosion studies of C–SiC composite Jet Vanes in solid rocket motor exhaust, J. Eur. Ceram. Soc., 31(2011), No. 13, p. 2425. doi: 10.1016/j.jeurceramsoc.2011.06.007
      [2]
      G.B. Sun, B.X. Dong, M.H. Cao, B.Q. Wei, and C.W. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption, Chem. Mater., 23(2011), No. 6, p. 1587. doi: 10.1021/cm103441u
      [3]
      W.M. Zhu, L. Wang, R. Zhao, J.W. Ren, G.Z. Lu, and Y.Q. Wang, Electromagnetic and microwave-absorbing properties of magnetic nickel ferrite nanocrystals, Nanoscale, 3(2011), No. 7, p. 2862. doi: 10.1039/c1nr10274e
      [4]
      D. Micheli, A. Vricella, R. Pastore, and M. Marchetti, Synthesis and electromagnetic characterization of frequency selective radar absorbing materials using carbon nanopowders, Carbon, 77(2014), p. 756. doi: 10.1016/j.carbon.2014.05.080
      [5]
      A. Ansari and M.J. Akhtar, Co/graphite based light weight microwave absorber for electromagnetic shielding and stealth applications, Mater. Res. Express, 4(2017), No. 1, art. No. 016304. doi: 10.1088/2053-1591/aa570c
      [6]
      B. Quan, X.H. Liang, G.B. Ji, et al., Dielectric polarization in electromagnetic wave absorption: Review and perspective, J. Alloys Compd., 728(2017), p. 1065. doi: 10.1016/j.jallcom.2017.09.082
      [7]
      C. Wang, V. Murugadoss, J. Kong, et al., Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding, Carbon, 140(2018), p. 696. doi: 10.1016/j.carbon.2018.09.006
      [8]
      M. Green and X.B. Chen, Recent progress of nanomaterials for microwave absorption, J. Materiomics, 5(2019), No. 4, p. 503. doi: 10.1016/j.jmat.2019.07.003
      [9]
      B. Zhao, X.Q. Guo, W.Y. Zhao, et al., Yolk–shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties, ACS Appl. Mater. Interfaces, 8(2016), No. 42, p. 28917. doi: 10.1021/acsami.6b10886
      [10]
      B. Zhao, J.W. Liu, X.Q. Guo, et al., Hierarchical porous Ni@boehmite/nickel aluminum oxide flakes with enhanced microwave absorption ability, Phys. Chem. Chem. Phys., 19(2017), No. 13, p. 9128. doi: 10.1039/C7CP00629B
      [11]
      B. Zhao, X. Zhang, J.S. Deng, et al., A novel sponge-like 2D Ni/derivative heterostructure to strengthen microwave absorption performance, Phys. Chem. Chem. Phys., 20(2018), No. 45, p. 28623. doi: 10.1039/C8CP06047A
      [12]
      Y. Wang, X. Gao, Y.Q. Fu, et al., Enhanced microwave absorption performances of polyaniline/graphene aerogel by covalent bonding, Composites Part B, 169(2019), p. 221. doi: 10.1016/j.compositesb.2019.04.008
      [13]
      L.X. Chen, J. Zhao, L. Wang, et al., In-situ pyrolyzed polymethylsilsesquioxane multi-walled carbon nanotubes derived ceramic nanocomposites for electromagnetic wave absorption, Ceram. Int., 45(2019), No. 9, p. 11756. doi: 10.1016/j.ceramint.2019.03.052
      [14]
      Y. Wang, X. Gao, C.H. Lin, L.Y. Shi, X.H. Li, and G.L. Wu, Metal organic frameworks-derived Fe–Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber, J. Alloys Compd., 785(2019), p. 765. doi: 10.1016/j.jallcom.2019.01.271
      [15]
      H.X. Zhang, B.B. Wang, A.L. Feng, et al., Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers, Composites Part B, 167(2019), p. 690. doi: 10.1016/j.compositesb.2019.03.055
      [16]
      Y. Kong, X.D. Shen, S. Cui, and M.H. Fan, Preparation of monolith SiC aerogel with high surface area and large pore volume and the structural evolution during the preparation, Ceram. Int., 40(2014), No. 6, p. 8265. doi: 10.1016/j.ceramint.2014.01.025
      [17]
      Z.M. An, C.S. Ye, R.B. Zhang, and Q. Qu, Multifunctional C/SiO2/SiC-based aerogels and composites for thermal insulators and electromagnetic interference shielding, J. Sol-Gel Sci. Technol., 89(2019), No. 3, p. 623. doi: 10.1007/s10971-019-04916-5
      [18]
      W. Wang, Y.F. Zhao, W.Q. Yan, S. Cui, X.D. Wu, and H. Suo, Preparation of the novel B4C–SiC composite aerogel with high compressive strength and low thermal conductivity, J. Porous Mater., 28(2021), No. 3, p. 703. doi: 10.1007/s10934-020-01024-6
      [19]
      Y. Jiang, Y. Chen, Y.J. Liu, and G.X. Sui, Lightweight spongy bone-like graphene@SiC aerogel composites for high-performance microwave absorption, Chem. Eng. J., 337(2018), p. 522. doi: 10.1016/j.cej.2017.12.131
      [20]
      Y. Kong, Y. Zhong, X.D. Shen, et al., Facile synthesis of resorcinol–formaldehyde/silica composite aerogels and their transformation to monolithic carbon/silica and carbon/silicon carbide composite aerogels, J. Non-Cryst. Solids, 358(2012), No. 23, p. 3150. doi: 10.1016/j.jnoncrysol.2012.08.029
      [21]
      L.Y. Cao, Y.S. Liu, Y.H. Zhang, et al., Thermal conductivity and bending strength of SiC composites reinforced by pitch-based carbon fibers, J. Adv. Ceram., 11(2022), No. 2, p. 247. doi: 10.1007/s40145-021-0527-5
      [22]
      M. Norouzi, D. Elhamifar, and R. Mirbagheri, Phenylene-based periodic mesoporous organosilica supported melamine: An efficient, durable and reusable organocatalyst, Microporous Mesoporous Mater., 278(2019), p. 251. doi: 10.1016/j.micromeso.2018.11.040
      [23]
      L. Lei, Z.B. Fu, Y. Yi, X.L. Huang, H. Tu, and C.Y. Wang, Preparation and characterization of RF aerogel on UV irradiation method, J. Sol-Gel Sci. Technol., 72(2014), No. 3, p. 553. doi: 10.1007/s10971-014-3472-8
      [24]
      Y. Chen, L. Yang, S.H. Xu, et al., Ultralight aerogel based on molecular-modified poly(m-phenylenediamine) crosslinking with polyvinyl alcohol/graphene oxide for flow adsorption, RSC Adv., 9(2019), No. 40, p. 22950. doi: 10.1039/C9RA04207E
      [25]
      Y. Huang, X.Y. Peng, X.D. Liu, C. Chen, and X.P. Han, Development of SiC fiber through heat treatment of silica aerogel by in situ curing, Mater. Lett., 283(2021), art. No. 128797. doi: 10.1016/j.matlet.2020.128797
      [26]
      M.H. Tai, B.C. Mohan, Z.Y. Yao, and C.H. Wang, Superhydrophobic leached carbon black/poly(vinyl) alcohol aerogel for selective removal of oils and organic compounds from water, Chemosphere, 286(2022), art. No. 131520. doi: 10.1016/j.chemosphere.2021.131520
      [27]
      J. Wei, X.T. Li, Y. Wang, B. Chen, M.J. Zhang, and C.M. Qin, Photoluminescence property of inexpensive flexible SiC nanowires membrane by electrospinning and carbothermal reduction, J. Am. Ceram. Soc., 103(2020), No. 11, p. 6187. doi: 10.1111/jace.17396
      [28]
      B. Du, D.Y. Zhang, J.J. Qian, et al., Multifunctional carbon nanofiber–SiC nanowire aerogel films with superior microwave absorbing performance, Adv. Compos. Hybrid Mater., 4(2021), No. 4, p. 1281. doi: 10.1007/s42114-021-00286-1
      [29]
      K. Chen, Z.H. Bao, A. Du, et al., Synthesis of resorcinol–formaldehyde/silica composite aerogels and their low-temperature conversion to mesoporous silicon carbide, Microporous Mesoporous Mater., 149(2012), No. 1, p. 16. doi: 10.1016/j.micromeso.2011.09.008
      [30]
      A. Zirakjou and M. Kokabi, SiC/C aerogels from biphenylene-bridged polysilsesquioxane/clay mineral nanocomposite aerogels, Ceram. Int., 46(2020), No. 2, p. 2194. doi: 10.1016/j.ceramint.2019.09.204
      [31]
      X.T. Li, X.H. Chen, and H.H. Song, Preparation of silicon carbide nanowires via a rapid heating process, Mater. Sci. Eng. B, 176(2011), No. 1, p. 87. doi: 10.1016/j.mseb.2010.09.007
      [32]
      C.Y. Li, Z. Xu, H.B. Ouyang, L.Y. Chang, J.F. Huang, and Y.J. Liu, Preparation, adsorption properties and microwave-assisted regeneration of porous C/SiC ceramics with a hierarchical structure, Appl. Compos. Mater., 27(2020), No. 3, p. 131. doi: 10.1007/s10443-020-09801-x
      [33]
      G.Q. An, H.L. Liu, H.Y. Li, Z. Chen, J. Li, and Y.J. Li, SiBCN ceramic aerogel/graphene composites prepared via sol–gel infiltration process and polymer-derived ceramics (PDCs) route, Ceram. Int., 46(2020), No. 6, p. 7001. doi: 10.1016/j.ceramint.2019.10.267
      [34]
      J.Z. Feng, J. Feng, and C.R. Zhang, Shrinkage and pore structure in preparation of carbon aerogels, J. Sol-Gel Sci. Technol., 59(2011), No. 2, p. 371. doi: 10.1007/s10971-011-2514-8
      [35]
      K.J. Lee, Y.G. Kang, Y.H. Kim, S.W. Baek, and H. Hwang, Synthesis of silicon carbide powders from methyl-modified silica aerogels, Appl. Sci., 10(2020), No. 18, art. No. 6161. doi: 10.3390/app10186161
      [36]
      L.J. Wang, S.Y. Zhao, and M. Yang, Structural characteristics and thermal conductivity of ambient pressure dried silica aerogels with one-step solvent exchange/surface modification, Mater. Chem. Phys., 113(2009), No. 1, p. 485. doi: 10.1016/j.matchemphys.2008.07.124
      [37]
      W. Zheng, X.B. He, M. Wu, X.H. Qu, R.J. Liu, and D.D. Guan, Graphite addition for SiC formation in diamond/SiC/Si composite preparation, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1166. doi: 10.1007/s12613-019-1808-7
      [38]
      S.N. Zhang, H.Q. Pang, T.H. Fan, Q. Ye, Q.L. Cai, and X. Wu, Thermal insulation performance of SiC-doped silica aerogels under large temperature and air pressure differences, Gels, 8(2022), No. 5, art. No. 320. doi: 10.3390/gels8050320
      [39]
      X.L. Ye, Z.F. Chen, J.X. Zhang, C. Wu, and J.F. Xiang, SiC network reinforced SiO2 aerogel with improved compressive strength and preeminent microwave absorption at elevated temperatures, Ceram. Int., 47(2021), No. 22, p. 31497. doi: 10.1016/j.ceramint.2021.08.027
      [40]
      Z.X. Cai, L. Su, H.J. Wang, et al., Alternating multilayered Si3N4/SiC aerogels for broadband and high-temperature electromagnetic wave absorption up to 1000°C, ACS Appl. Mater. Interfaces, 13(2021), No. 14, p. 16704. doi: 10.1021/acsami.1c02906
      [41]
      X.L. Ye, Z.F. Chen, S.F. Ai, et al., Novel three-dimensional SiC/melamine-derived carbon foam-reinforced SiO2 aerogel composite with low dielectric loss and high impedance matching ratio, ACS Sustainable Chem. Eng., 7(2019), No. 2, p. 2774. doi: 10.1021/acssuschemeng.8b05966

    Catalog


    • /

      返回文章
      返回