留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 7
Jul.  2023

图(7)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  1180
  • HTML全文浏览量:  413
  • PDF下载量:  138
  • 被引次数: 0
Xin Song, Shaolong Li, Shanshan Liu, Yong Fan, Jilin He,  and Jianxun Song, Coordination states of metal ions in molten salts and their characterization methods, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1261-1277. https://doi.org/10.1007/s12613-023-2608-7
Cite this article as:
Xin Song, Shaolong Li, Shanshan Liu, Yong Fan, Jilin He,  and Jianxun Song, Coordination states of metal ions in molten salts and their characterization methods, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1261-1277. https://doi.org/10.1007/s12613-023-2608-7
引用本文 PDF XML SpringerLink
特约综述

金属离子在熔盐中的配位状态及表征方法

  • 通讯作者:

    宋建勋    E-mail: jianxun.song@zzu.edu.cn

文章亮点

  • (1)系统讨论了获取熔盐微观结构的各种测试方法,并比较了它们的优缺点。
  • (2)全面综述了氯化物、氟化物、硝酸盐和碳酸盐熔融盐体系典型配位结构的研究进展。
  • (3)讨论了温度、电解质阴离子与阳离子以及金属氧化物(O2−)对熔盐结构的影响。
  • 熔盐的宏观特征由其微观结构决定。研究熔盐结构是深入理解熔盐物理化学性质并进一步探寻熔盐电解微观过程的基础。熔盐微观结构的测试手段有很多种,它们能够从不同的角度反映出物质的微观结构。本文主要讨论了可以获得熔盐微观结构的测试方法及对其优缺点进行了对比。论文对氯化盐、氟化盐、硝酸盐、碳酸盐熔盐体系结构已有的研究成果进行了梳理,总结了金属离子在熔盐体系中的典型配位结构。此外,本文还详细讨论了电解质阴离子与阳离子以及金属氧化物(O2−)对熔盐结构的影响。论文认为对微观结构和配位信息的深入理解也能为熔盐电解制备金属的机理探究和工艺优化提供理论依据,熔盐结构信息的准确性和完整性需要多种方法和跨学科领域的综合研究。因此,本文通过综述熔盐中金属离子配位状态及其表征方法,希望能为研究人员探索材料微观结构与宏观性能之间的相互关系提供新思路。
  • Invited Review

    Coordination states of metal ions in molten salts and their characterization methods

    + Author Affiliations
    • The macroscopic characteristics of molten salts are governed by their microstructures. Research on the structures of molten salts provides the foundation for a full understanding of the physicochemical properties of molten salts as well as a deeper analysis of the microscopic electrolysis process in molten salts. Information about the microstructure of matter can be obtained with the help of several speculative and experimental procedures. In this review, the advantages and disadvantages of the various test procedures used to determine the microstructures of molten salts are compared. The typical coordination configurations of metal ions in molten salt systems are also summarized. Furthermore, the impact of temperature, anions, cations, and metal oxides (O2−) on the structures of molten salts is discussed in detail. The accuracy and completeness of the information on molten salt structures need to be investigated by the integration of multiple methods and interdisciplinary fields. Information on the microstructure and coordination of molten salts deepens the understanding of the elementary elements of the microstructure of matter. This paper, which is based on the review of the coordination states of metal ions in molten salts, is hoped to inspire researchers to explore the inter-relationship between the microstructure and macroscopic properties of materials.
    • loading
    • [1]
      S.Q. Jiao, M.Y. Wang, and W.L. Song, Editorial for special issue on high-temperature molten salt chemistry and technology, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1569. doi: 10.1007/s12613-020-2225-7
      [2]
      X.L. Xi, M. Feng, L.W. Zhang, and Z.R. Nie, Applications of molten salt and progress of molten salt electrolysis in secondary metal resource recovery, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1599. doi: 10.1007/s12613-020-2175-0
      [3]
      V. van Speybroeck, R. Gani, and R.J. Meier, The calculation of thermodynamic properties of molecules, Chem. Soc. Rev., 39(2010), No. 5, p. 1764. doi: 10.1039/b809850f
      [4]
      W. Jia, Molecular Dynamics Study on Structure and Properties of Molten Salt in Alkali Metal Chloride System [Dissertation], East China University of Science and Technology, Shanghai, 2016, p. 145.
      [5]
      M.H. Brooker, R.W. Berg, J.H. von Barner, and N.J. Bjerrum, Matrix-isolated $ {\mathrm{A}\mathrm{l}}_{2}{\mathrm{O}\mathrm{F}}_{6}^{2-} $ ion in molten and solid LiF/NaF/KF, Inorg. Chem., 39(2000), No. 21, p. 4725. doi: 10.1021/ic000489x
      [6]
      Y.J. Jin and Y.B. Ai, The technology of nuclear magnetic resonance and its applications, Phy. Eng., 12(2002), No. 1, p. 47.
      [7]
      Y. Iwadate, K. Suzuki, N. Onda, et al., Local structure of molten LaCl3 analyzed by X-ray diffraction and La–LIII absorption-edge XAFS technique, J. Alloys Compd., 408-412(2006), p. 248. doi: 10.1016/j.jallcom.2005.04.037
      [8]
      C.Y. Wang, X.T. Chen, R. Wei, and Y. Gong, Raman spectroscopic and theoretical study of scandium fluoride and oxyfluoride anions in molten FLiNaK, J. Phys. Chem. B, 124(2020), No. 30, p. 6671. doi: 10.1021/acs.jpcb.0c06021
      [9]
      V. Dracopoulos, B. Gilbert, and G.N Papatheodorou, Vibrational modes and structure of lanthanide fluoride-potassium fluoride binary melts LnF3–KF (Ln = La, Ce, Nd, Sm, Dy, Yb), J. Chem. Soc., Faraday Trans., 94(1998), No. 17, p. 2601. doi: 10.1039/a802812e
      [10]
      N. Ma, J.L. You, L.M. Lu, J. Wang, M. Wang, and S.M. Wan, Micro-structure studies of the molten binary K3AlF6–Al2O3 system by in situ high temperature Raman spectroscopy and theoretical simulation, Inorg. Chem. Front., 5(2018), No. 8, p. 1861. doi: 10.1039/C8QI00226F
      [11]
      F.G. Edwards, J.E. Enderby, R.A. Howe, and D.I. Page, The structure of molten sodium chloride, J. Phys. C Solid State Phys., 8(1975), No. 21, p. 3483. doi: 10.1088/0022-3719/8/21/018
      [12]
      E.W.J. Mitchell, P.F.J. Poncet, and R.J. Stewart, The ion pair distribution functions in molten rubidium chloride, Philos. Mag., 34(1976), No. 5, p. 721. doi: 10.1080/14786437608222045
      [13]
      J. Locke, S. Messoloras, R.J. Stewart, R.L. McGreevy, and E.W.J. Mitchell, The structure of molten CsCl, Philos. Mag. B, 51(1985), No. 3, p. 301. doi: 10.1080/13642818508240576
      [14]
      X.M. Liu, H.H. Sun, X.P. Feng, and N. Zhang, Relationship between the microstructure and reaction performance of aluminosilicate, Int. J. Miner. Metall. Mater., 17(2010), No. 1, p. 108. doi: 10.1007/s12613-010-0119-9
      [15]
      A.L. Rollet, C. Bessada, A. Rakhmatoulline, et al., In situ high temperature NMR and EXAFS experiments in rare-earth fluoride molten salts, C. R. Chim., 7(2004), No. 12, p. 1135. doi: 10.1016/j.crci.2004.02.021
      [16]
      A.L. Rollet, E. Veron, and C. Bessada, Fission products behavior in molten fluoride salts: Speciation of La3+ and Cs+ in melts containing oxide ions, J. Nucl. Mater., 429(2012), No. 1-3, p. 40. doi: 10.1016/j.jnucmat.2012.05.010
      [17]
      A.L. Rollet and M. Salanne, Studies of the local structures of molten metal halides, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 107(2011), p. 88. doi: 10.1039/C1PC90003J
      [18]
      Y. Okamoto, H. Shiwaku, T. Yaita, S. Suzuki, and M. Gaune-Escard, High-energy EXAFS study of molten GdCl3 systems, J. Mol. Liq., 187(2013), p. 94. doi: 10.1016/j.molliq.2013.05.018
      [19]
      Y. Okamoto, XAFS simulation of highly disordered materials, Nucl. Instrum. Methods Phys. Res. Sect. A, 526(2004), No. 3, p. 572. doi: 10.1016/j.nima.2004.02.025
      [20]
      Y. Okamoto, H. Shiwaku, T. Yaita, H. Narita, and H. Tanida, Local structure of molten LaCl3 by K-absorption edge XAFS, J. Mol. Struct., 641(2002), No. 1, p. 71. doi: 10.1016/S0022-2860(02)00329-0
      [21]
      G.D. Zissi, A. Chrissanthopoulos, and G.N. Papatheodorou, Vibrational modes and structure of the LaCl3–CsCl melts, Vib. Spectrosc., 40(2006), No. 1, p. 110. doi: 10.1016/j.vibspec.2005.07.005
      [22]
      G. Bontempelli, F. Magno, and S. Daniele, Simple relationship for calculating backward to forward peak-current ratios in cyclic voltammetry, Anal. Chem., 57(1985), No. 7, p. 1503. doi: 10.1021/ac00284a081
      [23]
      J.J. O'Dea, J. Osteryoung, and R.A. Osteryoung, Theory of square wave voltammetry for kinetic systems, Anal. Chem., 53(1981), No. 4, p. 695. doi: 10.1021/ac00227a028
      [24]
      F. Lantelme and M. Chemla, Chronoamperometry for the determination of metallic interdiffusion coefficients. Rapid transport processes in the first atomic layers, J. Electroanal. Chem., 396(1995), No. 1-2, p. 203. doi: 10.1016/0022-0728(95)03933-8
      [25]
      T.J. Zhu, C.Y. Wang, H.Y. Fu, W. Huang, and Y. Gong, Electrochemical and Raman spectroscopic investigations on the speciation and behavior of chromium ions in fluoride doped molten LiCl–KCl, J. Electrochem. Soc., 166(2019), No. 10, p. H463. doi: 10.1149/2.1221910jes
      [26]
      M.Y. Wu, Dissolution and Electrochemical Reduction of Multivalent Refractory Metal Oxides in NaKClF Molten Salt [Dissertation], North China University of Science and Technology, Tangshan, 2016, p. 85.
      [27]
      J. Hetmańczyk, Ł. Hetmańczyk, A. Migdał-Mikuli, and E. Mikuli, Vibrational and reorientational dynamics, crystal structure and solid–solid phase transition studies in [Ca(H2O)6]Cl2 supported by theoretical (DFT) calculations, J. Raman Spectrosc., 47(2016), No. 5, p. 591. doi: 10.1002/jrs.4863
      [28]
      Y.C. Chen, Principle and application of quantum chemical computation, Technol. Manage. Sci., (2020), p. 110.
      [29]
      X.J. Li, J. Song, S.P. Shi, et al., Dynamic fluctuation of U3+ coordination structure in the molten LiCl–KCl eutectic via first principles molecular dynamics simulations, J. Phys. Chem. A, 121(2017), No. 3, p. 571. doi: 10.1021/acs.jpca.6b10193
      [30]
      N. Metropolis and S. Ulam, The Monte Carlo method, J. Am. Stat. Assoc., 44(1949), No. 247, p. 335. doi: 10.1080/01621459.1949.10483310
      [31]
      A. Baranyai, I. Ruff, and R.L. McGreevy, Monte Carlo simulation of the complete set of molten alkali halides, J. Phys. C: Solid State Phys., 19(1986), No. 4, p. 453. doi: 10.1088/0022-3719/19/4/008
      [32]
      B.J. Alder and T.E. Wainwright, Studies in molecular dynamics. I. General method, J. Chem. Phys., 31(1959), No. 2, p. 459. doi: 10.1063/1.1730376
      [33]
      C. Bessada, O. Pauvert, D. Zanghi, et al., In situ experimental approach of the speciation in molten lanthanide and actinide fluorides combining NMR, EXAFS and molecular dynamics, ECS Trans., 33(2010), No. 7, p. 361. doi: 10.1149/1.3484794
      [34]
      C. Bessada, O. Pauvert, L. Maksoud, et al., In situ experimental approach of speciation in molten fluorides: A combination of NMR, EXAFS, and molecular dynamics, [in] M. Gaune-Escard and G.M. Haarberg eds., Molten Salts Chemistry Technololgy, Weley, 2014, p. 219.
      [35]
      G.D. He, R. Tang, X.Z. Duan, et al., Molecular dynamics study on microstructure and diffusion characteristics of LiF–BeF2 molten salt, Chem. Eng. J., 71(2020), No. 8, p. 3565.
      [36]
      H.A. Levy, P.A. Agron, M.A. Bredig, and M.D. Danford, X-ray and neutron diffraction studies of molten alkali halides, Ann. N. Y. Acad. Sci., 79(1960), No. 11, p. 762.
      [37]
      T. Førland, T. Østvold, J. Krogh-Moe, Monte Carlo studies on fused salts. I. Calculations for a two-dimensional ionic model liquid, Acta Chem. Scand., 22(1968), No. 8, p. 2415.
      [38]
      M.A. Howe and R.L. McGreevy, A neutron-scattering study of the structure of molten lithium chloride, Philos. Mag. B, 58(1988), No. 5, p. 485. doi: 10.1080/13642818808208460
      [39]
      R. Takagi, H. Ohno, and K. Furukawa, Structure of molten KCl, J. Chem. Soc., Faraday Trans. 1, 75(1979), art. No. 1477. doi: 10.1039/f19797501477
      [40]
      C. Kwon, S.H. Noh, H. Chun, I.S. Hwang, and B. Han, First principles computational studies of spontaneous reduction reaction of Eu(III) in eutectic LiCl–KCl molten salt, Int. J. Energy Res., 42(2018), No. 8, p. 2757. doi: 10.1002/er.4064
      [41]
      J. Zhao, Z.T. Liu, W.S. Liang, and G.M. Lu, Evaluation of the local structure and electrochemical behavior in the LiCl–KCl–SmCl3 melt, J. Mol. Liq., 363(2022), art. No. 119818. doi: 10.1016/j.molliq.2022.119818
      [42]
      J. Song, S.P. Shi, X.J. Li, and L.M. Yan, First-principles molecular dynamics modeling of UCl3 in LiCl–KCl eutectic, J. Mol. Liq., 234(2017), p. 279. doi: 10.1016/j.molliq.2017.03.099
      [43]
      T. Jiang, N. Wang, C.M. Cheng, S.M. Peng, and L.M. Yan, Molecular dynamics simulation on the structure and thermodynamics of molten LiCl–KCl–CeCl3, Acta Phys. Chim. Sin., 32(2016), No. 3, p. 647. doi: 10.3866/PKU.WHXB201601042
      [44]
      G. Pastore, Z. Akdeniz, and M.P. Tosi, Structure of molten yttrium chloride in an ionic model, J. Phys. Condens. Matter, 3(1991), No. 42, p. 8297. doi: 10.1088/0953-8984/3/42/024
      [45]
      Z. Akdeniz and M.P. Tosi, Structure and binding of ionic clusters in Th and Zr chloride melts, Z. Naturforsch. A: Phys. Sci., 56(2001), No. 11, p. 717. doi: 10.1515/zna-2001-1102
      [46]
      Y. Okamoto and P.A. Madden, Structural study of molten lanthanum halides by X-ray diffraction and computer simulation techniques, J. Phys. Chem. Solids, 66(2005), No. 2-4, p. 448. doi: 10.1016/j.jpcs.2004.06.038
      [47]
      Y. Okamoto, S. Suzuki, H. Shiwaku, A. Ikeda-Ohno, T. Yaita, and P.A. Madden, Local coordination about La3+ in molten LaCl3 and its mixtures with alkali chlorides, J. Phys. Chem. A, 114(2010), No. 13, p. 4664. doi: 10.1021/jp910637p
      [48]
      L. Bulavin, V. Sokol’skii, O. Roik, et al., Structure and physical properties of ternary NaF–LiF–LnF3 (Ln = La, Nd) systems of eutectic compositions, Phys. Chem. Liq., 54(2016), No. 6, p. 717. doi: 10.1080/00319104.2016.1149176
      [49]
      H. Cui, Molecular Dynamics Simulation of Melt Structure of Rare Earth Metal Halide Molten Salt System [Dissertation], Kunming University of Science and Technology, 2002, Kumming, p. 136.
      [50]
      C. Bessada, D. Zanghi, M. Salanne, et al., Investigation of ionic local structure in molten salt fast reactor LiF–ThF4–UF4 fuel by EXAFS experiments and molecular dynamics simulations, J. Mol. Liq., 307(2020), art. No. 112927. doi: 10.1016/j.molliq.2020.112927
      [51]
      A.L Rollet, A. Rakhmatullin, and C. Bessada, Local structure analogy of lanthanide fluoride molten salts, Int. J. Thermophys., 26(2005), No. 4, p. 1115. doi: 10.1007/s10765-005-6688-6
      [52]
      E. Stefanidaki, G.M. Photiadis, C.G. Kontoyannis, A.F. Vik, and T. Østvold, Oxide solubility and Raman spectra of NdF3–LiF–KF–MgF2–Nd2O3 melts, J. Chem. Soc., Dalton Trans., 2002, No. 11, p. 2302. doi: 10.1039/b111563b
      [53]
      G. Hatem and M. Gaune-Escard, Calorimetric investigation of {xKF+(1−x)NdF3}(l), J. Chem. Thermodyn., 25(1993), No. 2, p. 219. doi: 10.1006/jcht.1993.1021
      [54]
      X.W. Hu, Z.W. Wang, B.L. Gao, Z.N. Shi, F.G. Liu, and X.Z. Cao, Density and ionic structure of NdF3–LiF melts, J. Rare Earths, 28(2010), No. 4, p. 587. doi: 10.1016/S1002-0721(09)60159-9
      [55]
      J.X. Dai, H. Han, Q.N. Li, and P. Huai, First-principle investigation of the structure and vibrational spectra of the local structures in LiF–BeF2 molten salts, J. Mol. Liq., 213(2016), p. 17. doi: 10.1016/j.molliq.2015.10.053
      [56]
      X.J. Lv, Z.X. Han, J.G. Chen, L.X. Jiang, Z.M. Xu, and Q.S. Liu, First-principles molecular dynamics study of ionic structure and transport properties of LiF–NaF–AlF3 molten salt, Chem. Phys. Lett., 706(2018), p. 237. doi: 10.1016/j.cplett.2018.06.005
      [57]
      H. Guo, J. Li, H.L. Zhang, et al., First-principles molecular dynamics investigation on KFNaF–AlF3 molten salt system, Chem. Phys. Lett., 730(2019), p. 587. doi: 10.1016/j.cplett.2019.06.060
      [58]
      C. Bessada, D. Zanghi, O. Pauvert, et al., High temperature EXAFS experiments in molten actinide fluorides: The challenge of a triple containment cell for radioactive and aggressive liquids, J. Nucl. Mater., 494(2017), p. 192. doi: 10.1016/j.jnucmat.2017.07.023
      [59]
      Y. Qiao, C.M. Pedersen, Y.X. Wang, and X.L. Hou, NMR insights on the properties of ZnCl2 molten salt hydrate medium through its interaction with SnCl4 and fructose, ACS Sustainable Chem. Eng., 2(2014), No. 11, p. 2576. doi: 10.1021/sc5004693
      [60]
      O. Pauvert, D. Zanghi, M. Salanne, et al., In situ experimental evidence for a nonmonotonous structural evolution with composition in the molten LiF–ZrF4 system, J. Phys. Chem. B, 114(2010), No. 19, p. 6472. doi: 10.1021/jp912195j
      [61]
      C. Bessada and A.L. Rollet, In situ spectroscopy in molten fluoride salts, [in] F. Lantelme and H. Grou eds., Molten Salts Chemistry, Elsevier, 2013, p. 33.
      [62]
      O. Pauvert, M. Salanne, D. Zanghi, et al., Ion specific effects on the structure of molten AF–ZrF4 systems (A+ = Li+, Na+, and K+), J. Phys. Chem. B, 115(2011), No. 29, p. 9160. doi: 10.1021/jp203137h
      [63]
      J.L. Hoard, Structures of complex Fluorides.1 Potassium heptafluocolumbate and potassium heptafluotantalate. The configuration of the heptafluocolumbate and heptafluotantalate ions, J. Am. Chem. Soc., 61(1939), No. 5, p. 1252. doi: 10.1021/ja01874a073
      [64]
      R.B. English, A.M. Heyns, and E.C. Reynhardt, An X-ray, NMR, infrared and Raman study of K2TaF7, J. Phys. C Solid State Phys., 16(1983), No. 5, p. 829. doi: 10.1088/0022-3719/16/5/010
      [65]
      C.C. Torardi, L.H. Brixner, and G. Blasse, Structure and luminescence of K2TaF7 and K2NbF7, J. Solid State Chem., 67(1987), No. 1, p. 21. doi: 10.1016/0022-4596(87)90333-1
      [66]
      X.D. Wang and S.Z. Duan, Identification of complex ions of Nb(V) in FLINAK–O2− System by infrared spectra, Rare Met., 12(1993), No. 3, p. 209.
      [67]
      G.S. Chen, M. Okido, and T. Oki, Electrochemical studies of titanium ions (Ti4+) in equimolar KCl–NaCl molten salts with 1 wt% K2TiF6, Electrochim. Acta, 32(1987), No. 11, p. 1637. doi: 10.1016/0013-4686(87)90017-X
      [68]
      G.S. Chen, M. Okido, and T. Oki, Electrochemical studies of titanium in fluoride–chloride molten salts, J. Appl. Electrochem., 18(1988), No. 1, p. 80. doi: 10.1007/BF01016208
      [69]
      Y. Iwadate, T. Harada, T. Ohkubo, et al., Pulsed neutron diffraction study of NaNO2 and KNO2 pure melts, Electrochemistry, 77(2009), No. 8, p. 741. doi: 10.5796/electrochemistry.77.741
      [70]
      Y. Fang, C.H. Fang, L.J. Lin, and X.F. Qin, A study on the structure of calcium nitrate tetrahydrate molten salt, Salt Lake Res., 2007, No. 1, p. 39.
      [71]
      H.X. Zhou, F.Y. Zhu, W.C. Fang, Y.G. Zhou, H.Y. Liu, C.H. Fang, and Y. Fang, Effect of additives on phase transition temperature and undercooling temperature of CaCl2·6H2O–Ca(NO3)2·4H2O and their molten salt structure, J. Mater. Sci. Eng., 37(2019), No. 1, p. 160.
      [72]
      I.S. Perelygin and G.P. Mikhailov, Manifestations of ion-ion interaction in the Raman spectra of the nitrate ion, J. Appl. Spectrosc., 48(1988), No. 5, p. 516. doi: 10.1007/BF00663465
      [73]
      R.W. Berg, D.H. Kerridge, and P.H. Larsen, NaNO2 + NaNO3 phase diagram: New data from DSC and Raman spectroscopy, J. Chem. Eng. Data, 51(2006), No. 1, p. 34. doi: 10.1021/je050105n
      [74]
      K.C. Xu and Y. Chen, Temperature-dependent Raman spectra of mixed crystals of NaNO3–KNO3: Evidence for limited solid solutions, J. Raman Spectrosc., 30(1999), No. 3, p. 173. doi: 10.1002/(SICI)1097-4555(199903)30:3<173::AID-JRS366>3.0.CO;2-2
      [75]
      S. Jayaraman, A.P. Thompson, O.A. von Lilienfeld, and E.J. Maginn, Molecular simulation of the thermal and transport properties of three alkali nitrate salts, Ind. Eng. Chem. Res., 49(2010), No. 2, p. 559. doi: 10.1021/ie9007216
      [76]
      N.A. Ponyatenko and I.V. Radchenko, Study of structure of binary fused monovalent nitratesd with Ca(NO3)2, Ba(NO3)2 and Sr(NO3)2 by the method of Raman scattering, Ukr. J. Phys., 14(1969), No. 1, p. 20.
      [77]
      N.A. Ponyatenko and I.V. Radchenko, Orientational interaction and rotational motion of the $ {\mathrm{N}\mathrm{O}}_{3}^{-} $ ion in monovalent nitrate melts, Opt. Spectrosc., 26(1969), p. 353.
      [78]
      B.L. Gao, F.G. Liu, and Z.W. Wang, Raman spectra of NaNO2–KNO3–NaNO3 ternary molten salts, Rare Met., 28(2009), No. S1, p. 581.
      [79]
      J.Y. Zhao, Structure Study on the Ternary NaNO3KNO3NaNO2 Molten Sallts [Dissertation], Qinghai Normal University, Xining, 2020, p. 77.
      [80]
      H.Y. Hou, J.L. You, Y.Q. Wu, H. Chen, and G.C. Jiang, Raman spectroscopic study of alkali carbonates, Chin. J. Light. Scatt., 13(2001), No. 3, p. 162.
      [81]
      L.J. Chen, J. Zuo, and C.J. Lin, In-situ Raman spectroscopy studies on the electrode process of cathode in MCFC, [in] Proceedings of the 13th Chinese Symposium on Molecular Spectroscopy, Xiamen, 2004, p. 199.
      [82]
      H. Ohata, K. Takeuchi, K. Ui, and N. Koura, The structure of molten lithium carbonate calculated by DFT and MD simulations, ECS Trans., 6(2007), No. 14, p. 57. doi: 10.1149/1.2811943
      [83]
      N. Koura, S. Kohara, K. Takeuchi, et al., Alkali carbonates: Raman spectroscopy, ab initio calculations, and structure, J. Mol. Struct., 382(1996), No. 3, p. 163. doi: 10.1016/0022-2860(96)09314-3
      [84]
      Y.Z. Wang, Influence of Additives on the Structure and Properties of Aluminum Electrolysis Molten Salt system [Dissertation], Kunming University of Science and Technology, Kunming, 2015, p. 93.
      [85]
      S.L. Jiang, C.M. Ye, Y.L. Liu, et al., Insights into the effects of fluoride anions on the electrochemical behavior and solution structure of trivalent samarium in LiCl–KCl molten salt, Electrochim. Acta, 439(2023), art. No. 141733. doi: 10.1016/j.electacta.2022.141733
      [86]
      J.L. You, T. Zhao, S. Petrik, Y.Y. Wang, and X.W. Liu, In-situ high temperature Raman spectroscopy and quantum chemical Ab initio simulation on species in molten NaF–AlF3 fluorides, [in] Proceedings of the 17th National Symposium on Molecular Spectroscopy, Shaoguan, 2012, p. 223.
      [87]
      J. Wang and C.L. Liu, Temperature and composition dependences of shear viscosities for molten alkali metal chloride binary systems by molecular dynamics simulation, J. Mol. Liq., 273(2019), p. 447. doi: 10.1016/j.molliq.2018.10.062
      [88]
      Y.L. Liu, J.H. Lan, L. Wang, et al., The influence of F ion on the electrochemical behavior and coordination properties of uranium in LiCl–KCl molten salt, Electrochimica Acta, 404(2022), art. No. 139573. doi: 10.1016/j.electacta.2021.139573
      [89]
      Y.K. Wu, G.Q. Yan, S. Chen, and L.J. Wang, Electrochemistry of Hf(IV) in NaCl–KCl–NaF–K2HfF6 molten salts, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1644. doi: 10.1007/s12613-020-2083-3
      [90]
      J.X. Song, Q.Y. Wang, J.Y. Wu, S.Q. Jiao, and H.M. Zhu, The influence of fluoride ions on the equilibrium between titanium ions and titanium metal in fused alkali chloride melts, Faraday Discuss., 190(2016), p. 421. doi: 10.1039/C6FD00007J
      [91]
      S.S. Liu, S.L. Li, C.H. Liu, J.L. He, and J.X. Song, Effect of fluoride ions on coordination structure of titanium in molten NaCl–KCl, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 868. doi: 10.1007/s12613-022-2527-z
      [92]
      R. Yuan, C. Lü, H.L. Wan, et al., Effect of fluoride addition on electrochemical behaviors of V(III) in molten LiCl−KCl, Trans. Monferrous Met. Soc. China, 32(2022), No. 8, p. 2736. doi: 10.1016/S1003-6326(22)65980-6
      [93]
      X. Bai, S. Li, J. He, and J. Song, Effect of fluoride-ion on the electrochemical behavior of tantalum ion in NaCl–KCl molten salt, J. Electrochem. Soc., 169(2022), No. 8, art. No. 082504. doi: 10.1149/1945-7111/ac8379
      [94]
      H. Guo, J. Li, H.L. Zhang, et al., Study on micro-structure and transport properties of KF–NaF–AlF3–Al2O3 system by first-principles molecular dynamics simulation, J. Fluorine Chem., 235(2020), art. No. 109546. doi: 10.1016/j.jfluchem.2020.109546
      [95]
      C.Y. Wang, Raman Spectroscopy and Theoretical Calculation of Metal Fluoride and Fluoride Oxides in Fluoride Molten Salt [Dissertation], University of Chinese Academy of Sciences, Beijing, 2021, p. 135.
      [96]
      X. Chen, H. Fu, and C. Wang, Influence of oxide ions on the speciation in molten KF–ZrF4 and KF–HfF4: A Raman spectroscopic and theoretical investigation, J. Mol. Liq., 342(2021), art. No. 117476. doi: 10.1016/j.molliq.2021.117476
      [97]
      X. Wang, C.F. Liao, and L.S. Luo, Effect of Nd2O3 on the properties and structure of AlF3–(Na/Li)F–Al2O3 melt, Chin. Rare Earth, 38(2017), No. 5, p. 1.
      [98]
      X.Y. Liu, Y.J. Li, B.Z. Wang, and C.Y. Wang, Raman and density functional theory studies of lutecium fluoride and oxyfluoride structures in molten FLiNaK, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 251(2021), art. No. 119435. doi: 10.1016/j.saa.2021.119435

    Catalog


    • /

      返回文章
      返回