Cite this article as:

Peng Sun, Sumei Han, Jinhua Liu, Jingjing Zhang, Shuo Yang, Faguo Wang, Wenxiu Liu, Shu Yin, Zhanwu Ning, and Wenbin Cao, Introducing oxygen vacancies in TiO2 lattice through trivalent iron to enhance the photocatalytic removal of indoor NO, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp.2025-2035. https://dx.doi.org/10.1007/s12613-023-2611-z
Peng Sun, Sumei Han, Jinhua Liu, Jingjing Zhang, Shuo Yang, Faguo Wang, Wenxiu Liu, Shu Yin, Zhanwu Ning, and Wenbin Cao, Introducing oxygen vacancies in TiO2 lattice through trivalent iron to enhance the photocatalytic removal of indoor NO, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp.2025-2035. https://dx.doi.org/10.1007/s12613-023-2611-z
引用本文 PDF XML SpringerLink

铁掺杂二氧化钛中的氧空位诱导生成机制及其光催化性能研究

摘要: 氧空位(OVs)由于可有效提高二氧化钛(TiO2)光催化性能而成为近年研究热点。然而,氧空位修饰二氧化钛(OVs-TiO2)仍面临合成温度高、成本高等问题,温和条件下实现OVs-TiO2的合成仍是较大的挑战。本文通过掺杂三价铁离子(Fe3+)在水热条件下实现了TiO2晶格中OVs的诱导生成,并通过理论计算和实验方法研究了铁掺杂二氧化钛(Fe–TiO2)中OVs的形成机制以及其光催化机理。结果表明:Fe–TiO2中的OVs形成能(1.12 eV)仅为TiO2(4.74 eV)的23.6%,阐明了TiO2晶格中OVs的Fe3+掺杂诱导生成机制;Fe3+和OVs可在TiO2能带中引入杂质态,增强了TiO2的光吸收活性;1%Fe–TiO2、2%Fe–TiO2和3%Fe–TiO2的载流子寿命分别为4.00、4.10和3.34 ns,高于未掺杂TiO2中的载流子寿命(3.22 ns),表明Fe3+和OVs可以促进电荷载流子分离。因此,由于具有较强的光吸收活性和较高的载流子分离效率,Fe–TiO2具有比其他光催化剂更高的室内一氧化氮光催化去除性能。

 

Introducing oxygen vacancies in TiO2 lattice through trivalent iron to enhance the photocatalytic removal of indoor NO

Abstract: The synthesis of oxygen vacancies (OVs)-modified TiO2 under mild conditions is attractive. In this work, OVs were easily introduced in TiO2 lattice during the hydrothermal doping process of trivalent iron ions. Theoretical calculations based on a novel charge-compensation structure model were employed with experimental methods to reveal the intrinsic photocatalytic mechanism of Fe-doped TiO2 (Fe–TiO2). The OVs formation energy in Fe–TiO2 (1.12 eV) was only 23.6% of that in TiO2 (4.74 eV), explaining why Fe3+ doping could introduce OVs in the TiO2 lattice. The calculation results also indicated that impurity states introduced by Fe3+ and OVs enhanced the light absorption activity of TiO2. Additionally, charge carrier transport was investigated through the carrier lifetime and relative mass. The carrier lifetime of Fe–TiO2 (4.00, 4.10, and 3.34 ns for 1at%, 2at%, and 3at% doping contents, respectively) was longer than that of undoped TiO2 (3.22 ns), indicating that Fe3+ and OVs could promote charge carrier separation, which can be attributed to the larger relative effective mass of electrons and holes. Herein, Fe–TiO2 has higher photocatalytic indoor NO removal activity compared with other photocatalysts because it has strong light absorption activity and high carrier separation efficiency.

 

/

返回文章
返回