留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 10
Oct.  2023

图(7)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  1034
  • HTML全文浏览量:  299
  • PDF下载量:  47
  • 被引次数: 0
Yurong He, Kuan Lu, Jinjia Liu, Xinhua Gao, Xiaotong Liu, Yongwang Li, Chunfang Huo, James P. Lewis, Xiaodong Wen, and Ning Li, Speeding up the prediction of C–O cleavage through bond valence and charge on iron carbides, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 2014-2024. https://doi.org/10.1007/s12613-023-2612-y
Cite this article as:
Yurong He, Kuan Lu, Jinjia Liu, Xinhua Gao, Xiaotong Liu, Yongwang Li, Chunfang Huo, James P. Lewis, Xiaodong Wen, and Ning Li, Speeding up the prediction of C–O cleavage through bond valence and charge on iron carbides, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 2014-2024. https://doi.org/10.1007/s12613-023-2612-y
引用本文 PDF XML SpringerLink
研究论文

结合键价和体相电荷加速预测碳化铁上C–O键解离活化能




  • 通讯作者:

    刘晓彤    E-mail: liuxiaotong@bistu.edu.cn

    霍春芳    E-mail: huochunfang@synfuelschina.com.cn

    James P. Lewis    E-mail: james.p.lewis.phd@gmail.com

文章亮点

  • (1)提出吸附态键价结合体相电荷的CO吸附结构描述因子。
  • (2)通过吸附态结构快速准确预测CO解离活化能。
  • (3)揭示体相结构对表面反应的作用本质。
  • CO分子在铁基材料上的活化是许多化学过程的关键基元反应。我们通过密度泛函理论计算,研究了CO在一系列Fe、Fe3C、Fe5C2和Fe2C催化剂上的吸附和解离。我们发现在不同的表面和位点上CO的吸附和活化性能有很大的不同。CO的活化取决于分子与表面的局部配位环境和催化剂的体相性质。体相性质和不同的局部键合环境的差异导致吸附的CO分子与表面之间不同的相互作用,从而产生不同的C–O键活化水平。我们还通过线性回归模型进行了不同类型铁基催化剂上吸附的CO活化能预测。我们结合来自表面和体相的特征来增强活化能的预测,并利用多项式表示的特征工程进行了八种不同的线性回归。其中,采用2次多项式特征生成的脊状线性回归模型预测CO的活化能表现最佳,平均绝对误差为0.269 eV。
  • Research Article

    Speeding up the prediction of C–O cleavage through bond valence and charge on iron carbides

    + Author Affiliations
    • The activation of CO on iron-based materials is a key elementary reaction for many chemical processes. We investigate CO adsorption and dissociation on a series of Fe, Fe3C, Fe5C2, and Fe2C catalysts through density functional theory calculations. We detect dramatically different performances for CO adsorption and activation on diverse surfaces and sites. The activation of CO is dependent on the local coordination of the molecule to the surface and on the bulk phase of the underlying catalyst. The bulk properties and the different local bonding environments lead to varying interactions between the adsorbed CO and the surface and thus yielding different activation levels of the C–O bond. We also examine the prediction of CO adsorption on different types of Fe-based catalysts by machine learning through linear regression models. We combine the features originating from surfaces and bulk phases to enhance the prediction of the activation energies and perform eight different linear regressions utilizing the feature engineering of polynomial representations. Among them, a ridge linear regression model with 2nd-degree polynomial feature generation predicted the best CO activation energy with a mean absolute error of 0.269 eV.
    • loading
    • Supplementary Information-10.1007s12613-023-2612-y.pdf
    • [1]
      A.Y. Khodakov, W. Chu, and P. Fongarland, Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels, Chem. Rev., 107(2007), No. 5, p. 1692. doi: 10.1021/cr050972v
      [2]
      J.P. Hindermann, G.J. Hutchings, and A. Kiennemann, Mechanistic aspects of the formation of hydrocarbons and alcohols from CO hydrogenation, Catal. Rev., 35(1993), No. 1, p. 1. doi: 10.1080/01614949308013907
      [3]
      J.E. Herrera, L. Balzano, A. Borgna, W.E. Alvarez, and D.E. Resasco, Relationship between the structure/composition of Co-Mo catalysts and their ability to produce single-walled carbon nanotubes by CO disproportionation, J. Catal., 204(2001), No. 1, p. 129. doi: 10.1006/jcat.2001.3383
      [4]
      L. Foppa, C. Copéret, and A. Comas-Vives, Increased back-bonding explains step-edge reactivity and particle size effect for CO activation on Ru nanoparticles, J. Am. Chem. Soc., 138(2016), No. 51, p. 16655. doi: 10.1021/jacs.6b08697
      [5]
      F. Fischer and H. Tropsch, Über die herstellung synthetischer ölgemische (synthol) durch aufbau aus kohlenoxid und wasserstoff, Brennstoff Chem., 4(1923), p. 276.
      [6]
      F. Fischer and H. Tropsch, Die erdölsynthese bei gewöhnlichem druck aus den vergasungsprodukten der kohlen, Brennstoff Chem., 7(1926), p. 97.
      [7]
      M.D. Shroff, D.S. Kalakkad, K.E. Coulter, et al., Activation of precipitated iron Fischer-Tropsch synthesis catalysts, J. Catal., 156(1995), No. 2, p. 185. doi: 10.1006/jcat.1995.1247
      [8]
      X.W. Liu, Z. Cao, S. Zhao, et al., Iron carbides in Fischer–Tropsch synthesis: Theoretical and experimental understanding in epsilon-iron carbide phase assignment, J. Phys. Chem. C, 121(2017), No. 39, p. 21390. doi: 10.1021/acs.jpcc.7b06104
      [9]
      M.Y. Ding, Y. Yang, B.S. Wu, et al., Study of phase transformation and catalytic performance on precipitated iron-based catalyst for Fischer–Tropsch synthesis, J. Mol. Catal. A: Chem., 303(2009), No. 1-2, p. 65. doi: 10.1016/j.molcata.2008.12.016
      [10]
      J.W. Niemantsverdriet, A.M. Van der Kraan, W.L. Van Dijk, and H.S. Van der Baan, Behavior of metallic iron catalysts during Fischer-Tropsch synthesis studied with Mössbauer spectroscopy, X-ray diffraction, carbon content determination, and reaction kinetic measurements, J. Phys. Chem., 84(1980), No. 25, p. 3363. doi: 10.1021/j100462a011
      [11]
      A.K. Datye, Y.M. Jin, L. Mansker, R.T. Motjope, T.H. Dlamini, and N.J. Coville, The nature of the active phase in iron Fischer-Tropsch catalysts, Stud. Surf. Sci. Catal., 130(2000), p. 1139.
      [12]
      K.M. Rao, F.E. Huggins, V. Mahajan, G.P. Huffman, D.B. Bukur, and V.S. Rao, Mössbauer study of CO-precipitated Fischer-Tropsch iron catalysts, Hyperfine Interact., 93(1994), No. 1, p. 1751. doi: 10.1007/BF02072940
      [13]
      S.P. Mehandru and A.B. Anderson, Binding and orientations of CO on Fe(110), (100), and (111): A surface structure effect from molecular orbital theory, Surf. Sci., 201(1988), No. 1-2, p. 345. doi: 10.1016/0039-6028(88)90617-6
      [14]
      G. Blyholder and M. Lawless, A theoretical study of the site of CO dissociation on Fe(100), Surf. Sci., 290(1993), No. 1-2, p. 155. doi: 10.1016/0039-6028(93)90597-D
      [15]
      T.E. Meehan and J.D. Head, A theoretical comparison of CO bonding on the Fe(100) surface, Surf. Sci., 243(1991), No. 1-3, p. L55. doi: 10.1016/0039-6028(91)90334-O
      [16]
      D.C. Sorescu, D.L. Thompson, M.M. Hurley, and C.F. Chabalowski, First-principles calculations of the adsorption, diffusion, and dissociation of a CO molecule on the Fe(100) surface, Phys. Rev. B, 66(2002), No. 3, art. No. 035416. doi: 10.1103/PhysRevB.66.035416
      [17]
      A. Stibor, G. Kresse, A. Eichler, and J. Hafner, Density functional study of the adsorption of CO on Fe(110), Surf. Sci., 507-510(2002), p. 99. doi: 10.1016/S0039-6028(02)01182-2
      [18]
      T.C. Bromfield, D.C. Ferré, and J.W. Niemantsverdriet, A DFT study of the adsorption and dissociation of CO on Fe(100): Influence of surface coverage on the nature of accessible adsorption states, Chemphyschem, 6(2005), No. 2, p. 254. doi: 10.1002/cphc.200400452
      [19]
      C.F. Huo, J. Ren, Y.W. Li, J.G. Wang, and H.J. Jiao, CO dissociation on clean and hydrogen precovered Fe(111) surfaces, J. Catal., 249(2007), No. 2, p. 174. doi: 10.1016/j.jcat.2007.04.018
      [20]
      D.C. Sorescu, Plane-wave DFT investigations of the adsorption, diffusion, and activation of CO on kinked Fe(710) and Fe(310) surfaces, J. Phys. Chem. C, 112(2008), No. 28, p. 10472. doi: 10.1021/jp8008145
      [21]
      T. Wang, X.X. Tian, Y.W. Li, J.G. Wang, M. Beller, and H.J. Jiao, Coverage-dependent CO adsorption and dissociation mechanisms on iron surfaces from DFT computations, ACS Catal., 4(2014), No. 6, p. 1991. doi: 10.1021/cs500287r
      [22]
      J.Q. Yin, Y.R. He, X.C. Liu, et al., Visiting CH4 formation and C1 + C1 couplings to tune CH4 selectivity on Fe surfaces, J. Catal., 372(2019), p. 217. doi: 10.1016/j.jcat.2019.03.007
      [23]
      A. Chakrabarty, O. Bouhali, N. Mousseau, C.S. Becquart, and F. El-Mellouhi, Insights on finite size effects in ab initio study of CO adsorption and dissociation on Fe 110 surface, J. Appl. Phys., 120(2016), No. 5, art. No. 055301. doi: 10.1063/1.4959990
      [24]
      D.B. Cao, F.Q. Zhang, Y.W. Li, and H.J. Jiao, Density functional theory study of CO adsorption on Fe5C2(001), -(100), and -(110) surfaces, J. Phys. Chem. B, 108(2004), No. 26, p. 9094. doi: 10.1021/jp049470w
      [25]
      D.B. Cao, F.Q. Zhang, Y.W. Li, J.G. Wang, and H.J. Jiao, Structures and energies of coadsorbed CO and H2 on Fe5C2(001), Fe5C2(110), and Fe5C2(100), J. Phys. Chem. B, 109(2005), No. 21, p. 10922. doi: 10.1021/jp050940b
      [26]
      J. Cheng, P. Hu, P. Ellis, S. French, G. Kelly, and C.M. Lok, Density functional theory study of iron and cobalt carbides for Fischer–Tropsch synthesis, J. Phys. Chem. C, 114(2010), No. 2, p. 1085. doi: 10.1021/jp908482q
      [27]
      M.O. Ozbek and J.W.H. Niemantsverdriet, Elementary reactions of CO and H2 on C-terminated χ-Fe5C2(001) surfaces, J. Catal., 317(2014), p. 158. doi: 10.1016/j.jcat.2014.06.009
      [28]
      M.O. Ozbek and J.W.H. Niemantsverdriet, Methane, formaldehyde and methanol formation pathways from carbon monoxide and hydrogen on the (001) surface of the iron carbide χ-Fe5C2, J. Catal., 325(2015), p. 9. doi: 10.1016/j.jcat.2015.01.018
      [29]
      L.J. Deng, C.F. Huo, X.W. Liu, et al., Density functional theory study on surface CxHy formation from CO activation on Fe3C(100), J. Phys. Chem. C, 114(2010), No. 49, p. 21585. doi: 10.1021/jp108480e
      [30]
      D.C. Sorescu, Plane-wave density functional theory investigations of the adsorption and activation of CO on Fe5C2 surfaces, J. Phys. Chem. C, 113(2009), No. 21, p. 9256. doi: 10.1021/jp811381d
      [31]
      C.F. Huo, Y.W. Li, J.G. Wang, and H.J. Jiao, Insight into CH4 formation in iron-catalyzed Fischer–Tropsch synthesis, J. Am. Chem. Soc., 131(2009), No. 41, p. 14713. doi: 10.1021/ja9021864
      [32]
      J.M. Gracia, F.F. Prinsloo, and J.W. Niemantsverdriet, Mars-van krevelen-like mechanism of CO hydrogenation on an iron carbide surface, Catal. Lett., 133(2009), No. 3-4, p. 257. doi: 10.1007/s10562-009-0179-5
      [33]
      M.A. Petersen, J.A. van den Berg, and W.J. van Rensburg, Role of step sites and surface vacancies in the adsorption and activation of CO on χ-Fe5C2 surfaces, J. Phys. Chem. C, 114(2010), No. 17, p. 7863. doi: 10.1021/jp911725u
      [34]
      S. Zhao, X.W. Liu, C.F. Huo, Y.W. Li, J.G. Wang, and H.J. Jiao, Determining surface structure and stability of ε-Fe2C, χ-Fe5C2, θ-Fe3C and Fe4C phases under carburization environment from combined DFT and atomistic thermodynamic studies, Catal. Struct. React., 1(2015), No. 1, p. 44.
      [35]
      S. Zhao, X.W. Liu, C.F. Huo, Y.W. Li, J.G. Wang, and H.J. Jiao, Surface morphology of Hägg iron carbide (χ-Fe5C2) from ab initio atomistic thermodynamics, J. Catal., 294(2012), p. 47. doi: 10.1016/j.jcat.2012.07.003
      [36]
      S. Zhao, X.W. Liu, C.F. Huo, et al., Morphology control of K2O promoter on Hägg carbide (χ-Fe5C2) under Fischer–Tropsch synthesis condition, Catal. Today, 261(2016), p. 93. doi: 10.1016/j.cattod.2015.07.035
      [37]
      T.H. Pham, X.Z. Duan, G. Qian, X.G. Zhou, and D. Chen, CO activation pathways of Fischer–Tropsch synthesis on χ-Fe5C2 (510): Direct versus hydrogen-assisted CO dissociation, J. Phys. Chem. C, 118(2014), No. 19, p. 10170. doi: 10.1021/jp502225r
      [38]
      R.J.P. Broos, B. Zijlstra, I.A.W. Filot, and E.J.M. Hensen, Quantum-chemical DFT study of direct and H- and C-assisted CO dissociation on the χ-Fe5C2 Hägg carbide, J. Phys. Chem. C: Nanomater. Interfaces, 122(2018), No. 18, p. 9929. doi: 10.1021/acs.jpcc.8b01064
      [39]
      Y.R. He, P. Zhao, J.Q. Yin, et al., CO direct versus H-assisted dissociation on hydrogen coadsorbed χ-Fe5C2 Fischer–Tropsch catalysts, J. Phys. Chem. C, 122(2018), No. 36, p. 20907. doi: 10.1021/acs.jpcc.8b06988
      [40]
      N. Song, J.B. Cao, B.X. Chen, G. Qian, X.Z. Duan, and X.G. Zhou, CO adsorption and activation of η-Fe2C Fischer–Tropsch catalyst, Ind. Eng. Chem. Res., 58(2019), No. 47, p. 21296. doi: 10.1021/acs.iecr.9b03769
      [41]
      Y.R. He, P. Zhao, Y. Meng, et al., Hunting the correlation between Fe5C2 surfaces and their activities on CO: The descriptor of bond valence, J. Phys. Chem. C, 122(2018), No. 5, p. 2806. doi: 10.1021/acs.jpcc.7b11430
      [42]
      B.X. Chen, D. Wang, X.Z. Duan, et al., Charge-tuned CO activation over a χ-Fe5C2 Fischer–Tropsch catalyst, ACS Catal., 8(2018), No. 4, p. 2709. doi: 10.1021/acscatal.7b04370
      [43]
      R.J.P. Broos, B. Klumpers, B. Zijlstra, I.A.W. Filot, and E.J.M. Hensen, A quantum-chemical study of the CO dissociation mechanism on low-index Miller planes of θ-Fe3C, Catal. Today, 342(2020), p. 152. doi: 10.1016/j.cattod.2019.02.015
      [44]
      E. de Smit, F. Cinquini, A.M. Beale, et al., Stability and reactivity of ε–χ–θ iron carbide catalyst phases in Fischer–Tropsch synthesis: Controlling μC, J. Am. Chem. Soc., 132(2010), No. 42, p. 14928. doi: 10.1021/ja105853q
      [45]
      C.F. Huo, B.S. Wu, P. Gao, Y. Yang, Y.W. Li, and H.J. Jiao, The mechanism of potassium promoter: Enhancing the stability of active surfaces, Angew. Chem. Int. Ed., 50(2011), No. 32, p. 7403. doi: 10.1002/anie.201007484
      [46]
      G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6(1996), No. 1, p. 15. doi: 10.1016/0927-0256(96)00008-0
      [47]
      G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B: Condens. Matter., 54(1996), No. 16, p. 11169. doi: 10.1103/PhysRevB.54.11169
      [48]
      J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865. doi: 10.1103/PhysRevLett.77.3865
      [49]
      J.P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron–gas correlation energy, Phys. Rev. B: Condens. Matter., 45(1992), No. 23, p. 13244. doi: 10.1103/PhysRevB.45.13244
      [50]
      P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B: Condens. Matter., 50(1994), No. 24, p. 17953. doi: 10.1103/PhysRevB.50.17953
      [51]
      G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59(1999), No. 3, p. 1758. doi: 10.1103/PhysRevB.59.1758
      [52]
      M. Methfessel and A.T. Paxton, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B: Condens. Matter., 40(1989), No. 6, p. 3616. doi: 10.1103/PhysRevB.40.3616
      [53]
      H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13(1976), No. 12, p. 5188. doi: 10.1103/PhysRevB.13.5188
      [54]
      H. Jónsson, G. Mills, and K.W. Jacobsen, Nudged elastic band method for finding minimum energy paths of transitions, [in] B.J. Berne, G. Ciccotti, and D.F. Coker, eds., Classical and Quantum Dynamics in Condensed Phase Simulations, 1998, p. 385.
      [55]
      G. Henkelman and H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J. Chem. Phys., 113(2000), No. 22, p. 9978. doi: 10.1063/1.1323224
      [56]
      J.J. Retief, Powder diffraction data and Rietveld refinement of Hägg-carbide, χ-Fe5C2, Powder Diffr., 14(1999), No. 2, p. 130. doi: 10.1017/S0885715600010435
      [57]
      X.W. Liu, S. Zhao, Y. Meng, et al., Mössbauer spectroscopy of iron carbides: from prediction to experimental confirmation, Sci. Rep. 6(2016), art. No. 26184.
      [58]
      G.H. Barton and B. Gale, The structure of a pseudo-hexagonal iron carbide, Acta Crystallogr., 17(1964), No. 11, p. 1460. doi: 10.1107/S0365110X64003590
      [59]
      I.G. Wood, L. Vočadlo, K.S. Knight, et al., Thermal expansion and crystal structure of cementite, Fe3C, between 4 and 600 K determined by time-of-flight neutron powder diffraction, J. Appl. Crystallogr., 37(2004), No. 1, p. 82. doi: 10.1107/S0021889803024695
      [60]
      S.L. Liu, Y.W. Li, J.G. Wang, and H.J. Jiao, Reactions of CO, H2O, CO2, and H2 on the clean and precovered Fe(110) surfaces–A DFT investigation, J. Phys. Chem. C, 119(2015), No. 51, p. 28377. doi: 10.1021/acs.jpcc.5b07497
      [61]
      D.B. Cao, Y.W. Li, J.G. Wang, and H.J. Jiao, Chain growth mechanism of Fischer–Tropsch synthesis on Fe5C2(001), J. Mol. Catal. A: Chem, 346(2011), No. 1-2, p. 55. doi: 10.1016/j.molcata.2011.06.009
      [62]
      J.Q. Yin, X.C. Liu, X.W. Liu, et al., Theoretical exploration of intrinsic facet-dependent CH4 and C2 formation on Fe5C2 particle, Appl. Catal. B, 278(2020), art. No. 119308. doi: 10.1016/j.apcatb.2020.119308
      [63]
      J.N. Bronsted, Acid and basic catalysis, Chem. Rev., 5(1928), No. 3, p. 231. doi: 10.1021/cr60019a001
      [64]
      M.G. Evans and M. Polanyi, Inertia and driving force of chemical reactions, Trans. Faraday Soc., 34(1938), No. 0, p. 11.
      [65]
      Z.P. Liu and P. Hu, General trends in CO dissociation on transition metal surfaces, J. Chem. Phys., 114(2001), No. 19, p. 8244. doi: 10.1063/1.1372512
      [66]
      L. Pauling, Atomic radii and interatomic distances in metals, J. Am. Chem. Soc., 69(1947), No. 3, p. 542. doi: 10.1021/ja01195a024
      [67]
      Q. Chang, C.H. Zhang, C.W. Liu, et al., Relationship between iron carbide phases (ε-Fe2C, Fe7C3, and χ-Fe5C2) and catalytic performances of Fe/SiO2 Fischer–Tropsch catalysts, ACS Catal., 8(2018), No. 4, p. 3304. doi: 10.1021/acscatal.7b04085

    Catalog


    • /

      返回文章
      返回