留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 9
Sep.  2023

图(9)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1611
  • HTML全文浏览量:  360
  • PDF下载量:  97
  • 被引次数: 0
Ziming Wang, Bo Feng,  and Yuangan Chen, Flotation separation depressants for scheelite and calcium-bearing minerals: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1621-1632. https://doi.org/10.1007/s12613-023-2613-x
Cite this article as:
Ziming Wang, Bo Feng,  and Yuangan Chen, Flotation separation depressants for scheelite and calcium-bearing minerals: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1621-1632. https://doi.org/10.1007/s12613-023-2613-x
引用本文 PDF XML SpringerLink
特约综述

白钨矿与含钙矿物浮选分离抑制剂研究:综述


  • 通讯作者:

    冯博    E-mail: fengbo319@163.com

文章亮点

  • (1) 系统地回顾了无机抑制剂在白钨资源回收上的应用。
  • (2) 系统地阐述了有机抑制剂在白钨资源回收上的优势与应用前景。
  • (3) 总结并展望了未来白钨伴生含钙矿物的抑制剂研究方向。
  • 由于黑钨矿的枯竭,钨开采的重点已逐渐转移到白钨矿。然而,分离相关矿物(如磷灰石、萤石和方解石)和白钨矿是一项挑战,因为它们的表面物理化学特性与白钨矿相似。幸运的是,研究人员通过使用抑制剂在分离白钨矿的矿物方面取得了实质性进展。本研究回顾了无机抑制剂在从含钙矿物中获取钨资源的应用和抑制机制;总结了新的有机抑制剂在从含钙矿物中获取钨资源的应用和相关机制。在客观评估了无机和有机抑制剂的优点和缺点后,提出了无机和有机抑制剂未来可能的研究方向,为开发白钨矿浮选抑制剂提供了理论基础。
  • Invited Review

    Flotation separation depressants for scheelite and calcium-bearing minerals: A review

    + Author Affiliations
    • Owing to the depletion of wolframite, the focus of tungsten extraction has gradually shifted to scheelite. However, separating the associated minerals (e.g., apatite, fluorite, and calcite) and scheelite is challenging because their surface physicochemical properties are similar to those of scheelite. Fortunately, researchers have made substantial progress in separating the minerals of scheelite by using depressants. This study reviews the application and inhibition mechanism of inorganic depressants in obtaining tungsten from its calcium-bearing minerals. The application of new organic depressants in obtaining tungsten from its calcium-bearing minerals and the associated mechanisms are also summarized. After an objective assessment of inorganic and organic depressants’ advantages and disadvantages, possible future research directions for inorganic and organic depressants are proposed. Herein, we provide a theoretical basis for developing scheelite flotation depressants.
    • loading
    • [1]
      D. Errandonea, F.J. Manjón, M. Somayazulu, and D. Häusermann, Effects of pressure on the local atomic structure of CaWO4 and YLiF4: Mechanism of the scheelite-to-wolframite and scheelite-to-fergusonite transitions, J. Solid State Chem., 177(2004), No. 4-5, p. 1087. doi: 10.1016/j.jssc.2003.10.017
      [2]
      J.Z. Kuang, Z.L. Zou, Z.Y. Huang, P.F. Liu, W.Q. Yuan, and L.P. Zhu, Surface dissolution of scheelite under different regulators and its effect on flotation behavior, Miner. Eng., 164(2021), art. No. 106811. doi: 10.1016/j.mineng.2021.106811
      [3]
      C. Liu, C.Q. Ni, J.X. Yao, et al., Hydroxypropyl amine surfactant: A novel flotation collector for efficient separation of scheelite from calcite, Miner. Eng., 167(2021), art. No. 106898. doi: 10.1016/j.mineng.2021.106898
      [4]
      Z.Q. Huang, S.Y. Shuai, V.E. Burov, et al., Application of a new amidoxime surfactant in flotation separation of scheelite and calcite: Adsorption mechanism and DFT calculation, J. Mol. Liq, 364(2022), art. No. 120036. doi: 10.1016/j.molliq.2022.120036
      [5]
      D. Azizi and F. Larachi, Surface interactions and flotation behavior of calcite, dolomite and ankerite with alkyl hydroxamic acid bearing collector and sodium silicate, Colloids Surf. A, 537(2018), p. 126. doi: 10.1016/j.colsurfa.2017.09.054
      [6]
      Y. Foucaud, R.L.S. Canevesi, A. Celzard, V. Fierro, and M. Badawi, Hydration mechanisms of scheelite from adsorption isotherms and ab initio molecular dynamics simulations, Appl. Surf. Sci., 562(2021), art. No. 150137. doi: 10.1016/j.apsusc.2021.150137
      [7]
      N. Kupka, Depressants in Scheelite Flotation: Mechanism of Sodium Carbonate and Acidified Water Glass and the Application of Process Mineralogy [Dissertation], Technische Universität Bergakademie Freiberg, Freiberg, 2020.
      [8]
      L.Y. Dong, Q. Wei, W.Q. Qin, and F. Jiao, Effect of iron ions as assistant depressant of citric acid on the flotation separation of scheelite from calcite, Chem. Eng. Sci., 241(2021), art. No. 116720. doi: 10.1016/j.ces.2021.116720
      [9]
      H.S. Han, Y. Xiao, Y.H. Hu, et al., Replacing Petrov’s process with atmospheric flotation using Pb–BHA complexes for separating scheelite from fluorite, Miner. Eng., 145(2020), art. No. 106053. doi: 10.1016/j.mineng.2019.106053
      [10]
      J.J. Wang, Z.Y. Gao, and W. Sun, Desorption and reuse of Pb–BHA–NaOL collector in scheelite flotation, Minerals, 13(2023), No. 4, art. No. 538. doi: 10.3390/min13040538
      [11]
      Y. Huang, W.Q. Wang, K. Zheng, Y. Wang, Q.M. Feng, and Q. Yang, Flotation behavior and mechanism of andalusite and quartz in the presence of sodium oleate, Min. Metall. Eng., 37(2017), No. 3, p. 61.
      [12]
      M.R. Atademir, J.A. Kitchener, and H.L. Shergold, The surface chemistry and flotation of scheelite, II. Flotation “collectors”, Int. J. Miner. Process., 8(1981), No. 1, p. 9. doi: 10.1016/0301-7516(81)90003-X
      [13]
      X.K. Li, Y. Zhang, Z.H. Guan, and H. Yang, Research progress of scheelite flotation reagents, Conserv. Util. Miner. Resour., 42(2022), No. 2, p. 14.
      [14]
      D.P. Patil and U.B. Nayak, Selective flotation of scheelite and calcite, [in] Proceeedings of National Seminar on Mineral Processing and IX Annual Technical Convention of Indian Institute of Mineral Engineers, Jamshedpur, 1985.
      [15]
      Z.Y. Gao, D. Bai, W. Sun, X.F. Cao, and Y.H. Hu, Selective flotation of scheelite from calcite and fluorite using a collector mixture, Miner. Eng., 72(2015), p. 23. doi: 10.1016/j.mineng.2014.12.025
      [16]
      L.O. Filippov, A. Duverger, I.V. Filippova, H. Kasaini, and J. Thiry, Selective flotation of silicates and Ca-bearing minerals: The role of non-ionic reagent on cationic flotation, Miner. Eng., 36-38(2012), p. 314. doi: 10.1016/j.mineng.2012.07.013
      [17]
      P. Somasundaran, Zeta potential of apatite in aqueous solutions and its change during equilibration, J. Colloid Interface Sci., 27(1968), No. 4, p. 659. doi: 10.1016/0021-9797(68)90098-2
      [18]
      P. Moulin and H. Roques, Zeta potential measurement of calcium carbonate, J. Colloid Interface Sci., 261(2003), No. 1, p. 115. doi: 10.1016/S0021-9797(03)00057-2
      [19]
      K.I. Marinakis and G.H. Kelsall, The surface chemical properties of scheelite (CaWO4) I. The scheelite/water interface and CaWO4 solubility, Colloids Surf., 25(1987), No. 2-4, p. 369. doi: 10.1016/0166-6622(87)80315-3
      [20]
      R. Arnold, E.E. Brownbill, and S.W. Ihle, Hallimond tube flotation of scheelite and calcite with amines, Int. J. Miner. Process., 5(1978), No. 2, p. 143. doi: 10.1016/0301-7516(78)90011-X
      [21]
      Z.Y. Gao, Y.H. Hu, W. Sun, and J.W. Drelich, Surface-charge anisotropy of scheelite crystals, Langmuir, 32(2016), No. 25, p. 6282. doi: 10.1021/acs.langmuir.6b01252
      [22]
      Y.H. Hu, Z.Y. Gao, W. Sun, and X.W. Liu, Anisotropic surface energies and adsorption behaviors of scheelite crystal, Colloids Surf. A, 415(2012), p. 439. doi: 10.1016/j.colsurfa.2012.09.038
      [23]
      R.W. Lahann, A chemical model for calcite crystal growth and morphology control, SEPM J. Sediment. Res., 48(1978), No. 1, p. 337.
      [24]
      M.M. Reddy and G.H. Nancollas, Calcite crystal growth inhibition by phosphonates, Desalination, 12(1973), No. 1, p. 61. doi: 10.1016/S0011-9164(00)80175-7
      [25]
      Z.Y. Gao, W. Sun, and Y.H. Hu, New insights into the dodecylamine adsorption on scheelite and calcite: An adsorption model, Miner. Eng., 79(2015), p. 54. doi: 10.1016/j.mineng.2015.05.011
      [26]
      X. Wang, Q. Song, R.Q. Xie, J. Liu, and Y.M. Zhu, Selective flotation separation of scheelite from apatite by application of ATMP as an efficient depressant, J. Mol. Liq., 378(2023), art. No. 121604. doi: 10.1016/j.molliq.2023.121604
      [27]
      P.W. Tasker, The structure and properties of fluorite crystal surfaces, J. Phys. Colloques, 41(1980), No. C6, p. C6.
      [28]
      W. Chen, Q.M. Feng, G.F. Zhang, Q. Yang, and C. Zhang, The effect of sodium alginate on the flotation separation of scheelite from calcite and fluorite, Miner. Eng., 113(2017), p. 1. doi: 10.1016/j.mineng.2017.07.016
      [29]
      W. Yao, M.L. Li, M. Zhang, R. Cui, J. Shi, and J.F. Ning, Effects of Pb2+ ions on the flotation behavior of scheelite, calcite, and fluorite in the presence of water glass, Colloids Surf. A, 632(2022), art. No. 127826. doi: 10.1016/j.colsurfa.2021.127826
      [30]
      W. Chen, Q.M. Feng, G.F. Zhang, Q. Yang, C. Zhang, and F.P. Xu, The flotation separation of scheelite from calcite and fluorite using dextran sulfate sodium as depressant, Int. J. Miner. Process., 169(2017), p. 53. doi: 10.1016/j.minpro.2017.10.005
      [31]
      Y.S. Gao, Z.Y. Gao, W. Sun, and Y.H. Hu, Selective flotation of scheelite from calcite: A novel reagent scheme, Int. J. Miner. Process., 154(2016), p. 10. doi: 10.1016/j.minpro.2016.06.010
      [32]
      H. Sis and S. Chander, Reagents used in the flotation of phosphate ores: A critical review, Miner. Eng., 16(2003), No. 7, p. 577. doi: 10.1016/S0892-6875(03)00131-6
      [33]
      J.I. Martins and M.M. Amarante, Scheelite flotation from tarouca mine ores, Miner. Process. Extr. Metall. Rev., 34(2013), No. 6, p. 367. doi: 10.1080/08827508.2012.657022
      [34]
      D.H. Ji, J.C. Li, Z.L. Ma, and W. Cheng, Application of flotation column and machine in the separation of a low grade scheelite ore in Hunan province, Conserv. Util. Miner. Resour., 41(2021), No. 2, p. 117.
      [35]
      M.C. Fuerstenau, G. Gutierrez, and D.A. Elgillani, The influence of sodium silicate in nonmetallic flotation systems, Trans. AIME, 241(1968), No. 3, p. 319.
      [36]
      X.F. Yang, P. Roonasi, and A. Holmgren, A study of sodium silicate in aqueous solution and sorbed by synthetic magnetite using in situ ATR-FTIR spectroscopy, J. Colloid Interface Sci., 328(2008), No. 1, p. 41. doi: 10.1016/j.jcis.2008.08.061
      [37]
      N. Kupka, B. Babel, and M. Rudolph, The potential role of colloidal silica as a depressant in scheelite flotation, Minerals, 10(2020), No. 2, art. No. 144. doi: 10.3390/min10020144
      [38]
      Y.H. Han, W.L. Liu, and J.H. Chen, DFT simulation of the adsorption of sodium silicate species on kaolinite surfaces, Appl. Surf. Sci., 370(2016), p. 403. doi: 10.1016/j.apsusc.2016.02.179
      [39]
      M.I. Marinakis, The Action of Sodium Silicate on the Flotation of Salt-type Minerals with Oleic Acid [Dissertation], Imperial College London, London, 1980.
      [40]
      Y.S. Gao, Z.Y. Gao, W. Sun, Z.G. Yin, J.J. Wang, and Y.H. Hu, Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation, J. Colloid Interface Sci., 512(2018), p. 39. doi: 10.1016/j.jcis.2017.10.045
      [41]
      B.M. Antti and E. Forssberg, Pulp chemistry in calcite flotation. Modelling of oleate adsorption using theoretical equilibrium calculations, Miner. Eng., 2(1989), No. 1, p. 93. doi: 10.1016/0892-6875(89)90068-X
      [42]
      W. Sun, H.H. Tang, and C. Chen, Solution chemistry behavior of sodium silicate in flotation of fluorite and scheelite, Chin. J. Nonferrous Met., 23(2013), No. 8, p. 2274.
      [43]
      Z.H. Guan, K.W. Lu, Y. Zhang, H. Yang, and X.K. Li, Study of the effect of manganese ion addition points on the separation of scheelite and calcite by sodium silicate, Materials (Basel), 15(2022), No. 13, art. No. 4699.
      [44]
      R.D. Deng, X.F. Yang, Y. Hu, J.G. Ku, W.R. Zuo, and Y.Q. Ma, Effect of Fe(II) as assistant depressant on flotation separation of scheelite from calcite, Miner. Eng., 118(2018), p. 133. doi: 10.1016/j.mineng.2017.12.017
      [45]
      B. Feng, W. Guo, H.G. Xu, J.X. Peng, X.P. Luo, and X.W. Zhu, The combined effect of lead ion and sodium silicate in the flotation separation of scheelite from calcite, Sep. Sci. Technol., 52(2017), No. 3, p. 567. doi: 10.1080/01496395.2016.1260590
      [46]
      W.P. Yan, L. Xiong, and X.Q. Chen, Application environment and mechanism of water glass in scheelite flotation, China Tungsten Ind., 29(2014), No. 4, p. 20.
      [47]
      Y.X. Lii and C.G. Li, Selective flotation of scheelite from calcium minerals with sodium oleate as a collector and phosphates as modifiers. I. Selective flotation of scheelite, Int. J. Miner. Process., 10(1983), No. 3, p. 205. doi: 10.1016/0301-7516(83)90011-X
      [48]
      B. Feng, X.P. Luo, J.Q. Wang, and P.C. Wang, The flotation separation of scheelite from calcite using acidified sodium silicate as depressant, Miner. Eng., 80(2015), p. 45. doi: 10.1016/j.mineng.2015.06.017
      [49]
      G.F. Zhang, H. Deng, K.S. Wei, and Q. Shi, The effect of acidized sodium silicate on flotation separation of fluorite and calcite, Nonferrous Met. Miner. Process. Sect., 2014, No. 1, p. 80.
      [50]
      Y. Foucaud, I.V. Filippova, and L.O. Filippov, Investigation of the depressants involved in the selective flotation of scheelite from apatite, fluorite, and calcium silicates: Focus on the sodium silicate/sodium carbonate system, Powder. Technol., 352(2019), p. 501. doi: 10.1016/j.powtec.2019.04.071
      [51]
      J.H. Kang, Y.H. Hu, W. Sun, Z.Y. Gao, and R.Q. Liu, Utilization of sodium hexametaphosphate for separating scheelite from calcite and fluorite using an anionic–nonionic collector, Minerals, 9(2019), No. 11, art. No. 705. doi: 10.3390/min9110705
      [52]
      W.L. Zhu, L.Y. Dong, F. Jiao, W.Q. Qin, and Q. Wei, Use of sodium hexametaphosphate and citric acid mixture as depressant in the flotation separation of scheelite from calcite, Minerals, 9(2019), No. 9, art. No. 560. doi: 10.3390/min9090560
      [53]
      X. Wang, W.H. Jia, C.R. Yang, et al., Innovative application of sodium tripolyphosphate for the flotation separation of scheelite from calcite, Miner. Eng., 170(2021), art. No. 106981. doi: 10.1016/j.mineng.2021.106981
      [54]
      C.G. Li and Y.X. Lü, Selective flotation of scheelite from calcium minerals with sodium oleate as a collector and phosphates as modifiers. II. The mechanism of the interaction between phosphate modifiers and minerals, Int. J. Miner. Process., 10(1983), No. 3, p. 219. doi: 10.1016/0301-7516(83)90012-1
      [55]
      O.N. Bel'kova, S.B. Leonov, and E.V. Shcherbakova, Intensification of beneficiation of scheelite ores by flotation, J. Min. Sci., 28(1993), No. 5, p. 480. doi: 10.1007/BF00711134
      [56]
      L.A. Samatova, E.D. Shepeta, and V.I. Gvozdev, Poor scheelite ores from Primorye deposits: Mineralogy and processing characteristics and dressing flowsheets, J. Min. Sci., 48(2012), No. 3, p. 565. doi: 10.1134/S1062739148030203
      [57]
      H.Q. Zhang, F. Zhou, H. Yu, and M.X. Liu, Double roles of sodium hexametaphosphate in the flotation of dolomite from apatite, Colloids Surf. A, 626(2021), art. No. 127080. doi: 10.1016/j.colsurfa.2021.127080
      [58]
      J.Z. Wang, W.Z. Yin, and Z.M. Sun, Effect and mechanism of co-depressant of calcite and sodium hexametaphosphate on scheelite flotation, Chin. J. Nonferrous Met., 28(2018), No. 8, p. 1645.
      [59]
      N. Kupka and M. Rudolph, Froth flotation of scheelite—A review, Int. J. Min. Sci. Technol., 28(2018), No. 3, p. 373. doi: 10.1016/j.ijmst.2017.12.001
      [60]
      Y.S. Gao, Z.Y. Gao, and W. Sun, Research progress of influence of metal ions on mineral flotation behavior and underlying mechanism, Chin. J. Nonferrous Met., 27(2017), No. 4, p. 859.
      [61]
      W. Yao, M.L. Li, M. Zhang, R. Cui, J. Shi, and J.F. Ning, Effect of Zn2+ and its addition sequence on flotation separation of scheelite from calcite using water glass, Colloids Surf. A, 588(2020), art. No. 124394. doi: 10.1016/j.colsurfa.2019.124394
      [62]
      J.M. Zachara, C.E. Cowan, and C.T. Resch, Sorption of divalent metals on calcite, Geochim. Cosmochim. Acta, 55(1991), No. 6, p. 1549. doi: 10.1016/0016-7037(91)90127-Q
      [63]
      Q. Shi, G.F. Zhang, Q.M. Feng, L.M. Ou, and Y.P. Lu, Effect of the lattice ions on the calcite flotation in presence of Zn(II), Miner. Eng., 40(2013), p. 24. doi: 10.1016/j.mineng.2012.09.016
      [64]
      J. Yu, Y.Y. Ge, X.L. Guo, and W.B. Guo, The depression effect and mechanism of NSFC on dolomite in the flotation of phosphate ore, Sep. Purif. Technol., 161(2016), p. 88. doi: 10.1016/j.seppur.2016.01.044
      [65]
      X.Y. Yu, R.R. Zhang, S.Y. Yang, et al., A novel decanedioic hydroxamic acid collector for the flotation separation of bastnäsite from calcite, Miner. Eng., 151(2020), art. No. 106306. doi: 10.1016/j.mineng.2020.106306
      [66]
      X.Y. Zhu, Y. Huang, Y.G. Zhu, N. Sun, and W.Q. Wang, Investigating the performance of oxalic acid for separating bastnaesite from calcium-bearing gangue minerals based on experiment and theoretical calculation, Miner. Eng., 170(2021), art. No. 107047. doi: 10.1016/j.mineng.2021.107047
      [67]
      N. Kupka, P. Kaden, A. Jantschke, E. Schach, and M. Rudolph, Acidified water glass in the selective flotation of scheelite from calcite, part II: Species in solution and related mechanism of the depressant, Physicochem. Probl. Miner. Process., 56(2020), No. 5, p. 798. doi: 10.37190/ppmp/125639
      [68]
      X. Wang, W.Q. Qin, F. Jiao, et al., Review on development of low-grade scheelite recovery from molybdenum tailings in Luanchuan, China: A case study of Luoyang Yulu Mining Company, Trans. Nonferrous Met. Soc. China, 32(2022), No. 3, p. 980. doi: 10.1016/S1003-6326(22)65848-5
      [69]
      S. Ilhan, A.O. Kalpakli, C. Kahruman, and I. Yusufoglu, The investigation of dissolution behavior of gangue materials during the dissolution of scheelite concentrate in oxalic acid solution, Hydrometallurgy, 136(2013), p. 15. doi: 10.1016/j.hydromet.2013.02.013
      [70]
      L.Y. Dong, L.D. Qiao, Q.F. Zheng, et al., Enhanced adsorption of citric acid at the calcite surface by adding copper ions: Flotation separation of scheelite from calcite, Colloids Surf. A, 663(2023), art. No. 131036. doi: 10.1016/j.colsurfa.2023.131036
      [71]
      N. Kupka, R. Möckel, and M. Rudolph, Acidified water glass in the selective flotation of scheelite from calcite, Part I: Performance and impact of the acid type, Physicochem. Probl. Miner. Process., 56(2020), No. 2, p. 238.
      [72]
      L.Y. Dong, F. Jiao, W.Q. Qin, and Q. Wei, New insights into the depressive mechanism of citric acid in the selective flotation of scheelite from fluorite, Miner. Eng., 171(2021), art. No. 107117. doi: 10.1016/j.mineng.2021.107117
      [73]
      Z.Y. Liu, Y.H. Sun, X.H. Zhou, T. Wu, Y. Tian, and Y.Z. Wang, Synthesis and scale inhibitor performance of polyaspartic acid, J. Environ. Sci., 23(2011), p. S153. doi: 10.1016/S1001-0742(11)61100-5
      [74]
      J.H. Fu, H.S. Han, Z. Wei, et al., Selective separation of scheelite from calcite using tartaric acid and Pb–BHA complexes, Colloids Surf. A, 622(2021), art. No. 126657. doi: 10.1016/j.colsurfa.2021.126657
      [75]
      L.Y. Dong, F. Jiao, W.Q. Qin, and Q. Wei, Utilization of iron ions to improve the depressive efficiency of tartaric acid on the flotation separation of scheelite from calcite, Miner. Eng., 168(2021), art. No. 106925. doi: 10.1016/j.mineng.2021.106925
      [76]
      J. Rutledge and C.Anderson, Tannins in mineral processing and extractive metallurgy, Metals, 5(2015), No. 3, p. 1520. doi: 10.3390/met5031520
      [77]
      Y.P. Qian, X.A. Qiu, T.W. Shen, Y.Y. Huai, B. Chen, and Z. Wang, Effect of calcium ion on the flotation of fluorite and calcite using sodium oleate as collector and tannic acid as depressant, Minerals, 12(2022), No. 8, art. No. 996. doi: 10.3390/min12080996
      [78]
      M. Fraga-Corral, P. García-Oliveira, A.G. Pereira, et al., Technological application of tannin-based extracts, Molecules, 25(2020), No. 3, art. No. 614. doi: 10.3390/molecules25030614
      [79]
      J. Iskra, M.G. Fleming, and J.A. Kitchener, Quebracho in Mineral Processing, Imperial College London, London, 1980.
      [80]
      F. Hernáinz Bermúdez de Castro and M. Calero de Hoces, Influence of quebracho and sodium silicate on flotation of celestite and calcite with sodium oleate, Int. J. Miner. Process., 37(1993), No. 3-4, p. 283. doi: 10.1016/0301-7516(93)90032-6
      [81]
      F. Hernáinz Bermúdez de Castro and A. Gálvez Borrego, The influence of temperature during flotation of celestite and calcite with sodium oleate and quebracho, Int. J. Miner. Process., 46(1996), No. 1-2, p. 35. doi: 10.1016/0301-7516(95)00059-3
      [82]
      S.Y. Yang, Y.L. Xu, C. Liu, L.Y. Huang, Z.Q. Huang, and H.Q. Li, The anionic flotation of fluorite from barite using gelatinized starch as the depressant, Colloids Surf. A, 597(2020), art. No. 124794. doi: 10.1016/j.colsurfa.2020.124794
      [83]
      W.X. Zhu, J.H. Pan, X.Y. Yu, et al., The flotation separation of fluorite from calcite using hydroxypropyl starch as a depressant, Colloids Surf. A: Physicochem. Eng. Aspects, 616(2021), art. No. 126168. doi: 10.1016/j.colsurfa.2021.126168
      [84]
      Y.G. Chen, B. Feng, H.S. Yan, et al., Adsorption and depression mechanism of an eco-friendly depressant dextrin onto fluorite and calcite for the efficiency flotation separation, Colloids Surf. A, 635(2022), art. No. 127987. doi: 10.1016/j.colsurfa.2021.127987
      [85]
      R.F. Sun, D. Liu, X.S. Tian, Q. Zuo, D.Q. Wang, and S.M. Wen, The role of copper ion and soluble starch used as a combined depressant in the flotation separation of fluorite from calcite: New insights on the application of modified starch in mineral processing, Miner. Eng., 181(2022), art. No. 107550. doi: 10.1016/j.mineng.2022.107550
      [86]
      X. Zheng and R.W. Smith, Dolomite depressants in the flotation of apatite and collophane from dolomite, Miner. Eng., 10(1997), No. 5, p. 537. doi: 10.1016/S0892-6875(97)00031-9
      [87]
      J.Z. Wang, J.Z. Bai, W.Z. Yin, and X. Liang, Flotation separation of scheelite from calcite using carboxyl methyl cellulose as depressant, Miner. Eng., 127(2018), p. 329. doi: 10.1016/j.mineng.2018.03.047
      [88]
      S. Song, A. Lopez-Valdivieso, C. Martinez-Martinez, and R. Torres-Armenta, Improving fluorite flotation from ores by dispersion processing, Miner. Eng., 19(2006), No. 9, p. 912. doi: 10.1016/j.mineng.2005.10.005
      [89]
      A. Apling, Flotation: Theory, reagents and ore testing, Corros. Sci., 33(1992), No. 12, p. 1997. doi: 10.1016/0010-938X(92)90197-B
      [90]
      L.Y. Dong, F. Jiao, W.Q. Qin, H.L. Zhu, and W.H. Jia, New insights into the carboxymethyl cellulose adsorption on scheelite and calcite: Adsorption mechanism, AFM imaging and adsorption model, Appl. Surf. Sci., 463(2019), p. 105. doi: 10.1016/j.apsusc.2018.08.192
      [91]
      L.Y. Dong, F. Jiao, W.Q. Qin, and W. Liu, Selective flotation of scheelite from calcite using xanthan gum as depressant, Miner. Eng., 138(2019), p. 14. doi: 10.1016/j.mineng.2019.04.030
      [92]
      C.H. Zhong, H.H. Wang, B. Feng, L.Z. Zhang, Y.G. Chen, and Z.Y. Gao, Flotation separation of scheelite and apatite by polysaccharide depressant xanthan gum, Miner. Eng., 170(2021), art. No. 107045. doi: 10.1016/j.mineng.2021.107045
      [93]
      K.L. Zhao, G.H. Gu, X.H. Wang, W. Yan, and Y.H. Hu, The effect of depressant sesbania gum on the flotation of a talc-containing scheelite ore, J. Mater. Res. Technol., 8(2019), No. 1, p. 14. doi: 10.1016/j.jmrt.2018.01.006
      [94]
      Y.Z. Zhang, G.H. Gu, X.B. Wu, and K.L. Zhao, Selective depression behavior of guar gum on talc-type scheelite flotation, Int. J. Miner. Metall. Mater., 24(2017), No. 8, p. 857. doi: 10.1007/s12613-017-1470-x
      [95]
      M.T. Wang, G.H. Huang, G.F. Zhang, Y.F. Chen, D.Z. Liu, and C.B. Li, Selective flotation separation of fluorite from calcite by application of flaxseed gum as depressant, Miner. Eng., 168(2021), art. No. 106938. doi: 10.1016/j.mineng.2021.106938
      [96]
      Y.J. Luo, G.F. Zhang, C.B. Li, et al., Flotation separation of smithsonite from calcite using a new depressant fenugreek gum, Colloids Surf. A, 582(2019), art. No. 123794. doi: 10.1016/j.colsurfa.2019.123794
      [97]
      Q. Wei, L.Y. Dong, F. Jiao, and W.Q. Qin, Selective flotation separation of fluorite from calcite by using sesbania gum as depressant, Miner. Eng., 174(2021), art. No. 107239. doi: 10.1016/j.mineng.2021.107239
      [98]
      H.P. Zhou, Z.Z. Yang, Y.B. Zhang, F.X. Xie, and X.P. Luo, Flotation separation of smithsonite from calcite by using flaxseed gum as depressant, Miner. Eng., 167(2021), art. No. 106904. doi: 10.1016/j.mineng.2021.106904
      [99]
      H.P. Zhou, Z.Z. Yang, X.K. Tang, W. Sun, Z.Y. Gao, and X.P. Luo, Enhancing flotation separation effect of fluorite and calcite with polysaccharide depressant tamarind seed gum, Colloids Surf. A, 624(2021), art. No. 126784. doi: 10.1016/j.colsurfa.2021.126784
      [100]
      H.P. Zhou, Y.B. Zhang, X.K. Tang, Y.J. Cao, and X.P. Luo, Flotation separation of fluorite from calcite by using psyllium seed gum as depressant, Miner. Eng., 159(2020), art. No. 106514. doi: 10.1016/j.mineng.2020.106514
      [101]
      Z.J. Wang, H.Q. Wu, J. Yang, et al., Selective flotation separation of bastnaesite from calcite using xanthan gum as a depressant, Appl. Surf. Sci., 512(2020), art. No. 145714. doi: 10.1016/j.apsusc.2020.145714
      [102]
      C.H. Zhong, B. Feng, L.Z. Zhang, W.P. Zhang, H.H. Wang, and Z.Y. Gao, Flotation separation of apatite and calcite using gum arabic as a depressant, Colloids Surf. A, 632(2022), art. No. 127723. doi: 10.1016/j.colsurfa.2021.127723
      [103]
      G.H. Ai, C. Liu, and W.C. Zhang, Utilization of sodium humate as selective depressants for calcite on the flotation of scheelite, Sep. Sci. Technol., 53(2018), No. 13, p. 2136. doi: 10.1080/01496395.2018.1443138
      [104]
      S.A. Antsiferova, S.M. Markosyan, and O.N. Suvorova, The effect of a humate reagent and sodium oleate on the wettability of fluorite, calcite, and quartz, Theor. Found. Chem. Eng., 53(2019), No. 4, p. 656. doi: 10.1134/S0040579518050032
      [105]
      X. Wang, F. Jiao, W.Q. Qin, et al., Sulfonated brown coal: A novel depressant for the selective flotation of scheelite from calcite, Colloids Surf. A, 602(2020), art. No. 125006. doi: 10.1016/j.colsurfa.2020.125006
      [106]
      B. Feng, W. Guo, J.X. Peng, and W.P. Zhang, Separation of scheelite and calcite using calcium lignosulphonate as depressant, Sep. Purif. Technol., 199(2018), p. 346. doi: 10.1016/j.seppur.2018.02.009
      [107]
      W.B. Zhou, J. Moreno, R. Torres, H. Valle, and S.X. Song, Flotation of fluorite from ores by using acidized water glass as depressant, Miner. Eng., 45(2013), p. 142. doi: 10.1016/j.mineng.2013.02.017
      [108]
      Z.Y. Gao, C. Wang, W. Sun, Y.S. Gao, and P.B. Kowalczuk, Froth flotation of fluorite: A review, Adv. Colloid Interface Sci., 290(2021), art. No. 102382. doi: 10.1016/j.cis.2021.102382
      [109]
      B. Feng, L.Z. Zhang, W.P. Zhang, H.H. Wang, and Z.Y. Gao, Mechanism of calcium lignosulfonate in apatite and dolomite flotation system, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1697. doi: 10.1007/s12613-021-2313-3
      [110]
      W. Chen, Q.M. Feng, G.F. Zhang, D.Z. Liu, and L.F. Li, Selective flotation of scheelite from calcite using calcium lignosulphonate as depressant, Miner. Eng., 119(2018), p. 73. doi: 10.1016/j.mineng.2018.01.015
      [111]
      L.Y. Dong, Q. Wei, W.Q. Qin, and F. Jiao, Selective adsorption of sodium polyacrylate on calcite surface: Implications for flotation separation of apatite from calcite, Sep. Purif. Technol., 241(2020), art. No. 116415. doi: 10.1016/j.seppur.2019.116415
      [112]
      Y. Zhang, Y.Y. Li, R. Chen, Y.H. Wang, J.S. Deng, and X.M. Luo, Flotation separation of scheelite from fluorite using sodium polyacrylate as inhibitor, Minerals, 7(2017), No. 6, art. No. 102. doi: 10.3390/min7060102
      [113]
      J. Liu, X. Wang, Y.M. Zhu, and Y.X. Han, Flotation separation of scheelite from fluorite by using DTPA as a depressant, Miner. Eng., 175(2022), art. No. 107311. doi: 10.1016/j.mineng.2021.107311

    Catalog


    • /

      返回文章
      返回