留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 7
Jul.  2023

图(14)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  1781
  • HTML全文浏览量:  451
  • PDF下载量:  236
  • 被引次数: 0
Ziyong Chang, Sensen Niu, Zhengchang Shen, Laichang Zou, and Huajun Wang, Latest advances and progress in the microbubble flotation of fine minerals: Microbubble preparation, equipment, and applications, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1244-1260. https://doi.org/10.1007/s12613-023-2615-8
Cite this article as:
Ziyong Chang, Sensen Niu, Zhengchang Shen, Laichang Zou, and Huajun Wang, Latest advances and progress in the microbubble flotation of fine minerals: Microbubble preparation, equipment, and applications, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1244-1260. https://doi.org/10.1007/s12613-023-2615-8
引用本文 PDF XML SpringerLink
特约综述

微细粒矿物微泡浮选的研究进展:微泡的制备、设备和应用

  • 通讯作者:

    常自勇    E-mail: changziyong@ustb.edu.cn

文章亮点

  • (1) 总结了微泡的制备方法及微泡浮选设备的种类及应用。
  • (2) 回顾了微泡浮选在改善微细粒矿物可浮性中的应用。
  • (3) 归纳总结了纳米气泡促进微细粒浮选的作用机理。
  • 在过去的几十年里,微泡浮选在细粒矿物的分选中得到了广泛的研究。与常规浮选相比,微泡浮选具有品位高、回收率高、浮选药剂消耗低等诸多优点。本文系统综述了微泡浮选在微细矿物颗粒分选的研究进展。通常,微泡的气泡尺寸小、比表面积大、表面能高、选择性好,并且还易附着在疏水颗粒或大气泡的表面,大大降低了颗粒从气泡上脱附的概率。微泡可以通过加压溶气减压释气法、电解法、超声空化法、光催化法、溶液替换法、温差法(TDM)以及文丘里管和薄膜法来制备。相应地,微细粒浮选设备可分为微泡析出式浮选机、离心浮选柱、充填式浮选柱和磁浮选柱。在实践中,微泡浮选在超细煤、金属矿物和非金属矿物的选矿中得到了广泛的研究,并表现出优于传统浮选机的优势。纳米气泡促进微细粒浮选的机理包括微细粒的团聚、纳米气泡在水溶液中的高稳定性以及颗粒疏水性和浮选动力学的增强。
  • Invited Review

    Latest advances and progress in the microbubble flotation of fine minerals: Microbubble preparation, equipment, and applications

    + Author Affiliations
    • In the past few decades, microbubble flotation has been widely studied in the separation and beneficiation of fine minerals. Compared with conventional flotation, microbubble flotation has obvious advantages, such as high grade and recovery and low consumption of flotation reagents. This work systematically reviews the latest advances and research progress in the flotation of fine mineral particles by microbubbles. In general, microbubbles have small bubble size, large specific surface area, high surface energy, and good selectivity and can also easily be attached to the surface of hydrophobic particles or large bubbles, greatly reducing the detaching probability of particles from bubbles. Microbubbles can be prepared by pressurized aeration and dissolved air, electrolysis, ultrasonic cavitation, photocatalysis, solvent exchange, temperature difference method (TDM), and Venturi tube and membrane method. Correspondingly, equipment for fine-particle flotation is categorized as microbubble release flotation machine, centrifugal flotation column, packed flotation column, and magnetic flotation machine. In practice, microbubble flotation has been widely studied in the beneficiation of ultrafine coals, metallic minerals, and nonmetallic minerals and exhibited superiority over conventional flotation machines. Mechanisms underpinning the promotion of fine-particle flotation by nanobubbles include the agglomeration of fine particles, high stability of nanobubbles in aqueous solutions, and enhancement of particle hydrophobicity and flotation dynamics.
    • loading
    • [1]
      F.H. Abd El-Rahiem, Recent trends in flotation of fine particles, J. Min. World Express, 3(2014), art. No. 63. doi: 10.14355/mwe.2014.03.009
      [2]
      P.P. Wang and P.R. Brito-Parada, Dynamics of a particle-laden bubble colliding with an air-liquid interface, Chem. Eng. J., 429(2022), art. No. 132427. doi: 10.1016/j.cej.2021.132427
      [3]
      W.P. Du, Research progress on micro-fine particles mineral flotation, Copper. Eng., 2017, No. 2, p. 63.
      [4]
      H.N. Wang, W.Q. Yang, X.K. Yan, L.J. Wang, Y.T. Wang, and H.J. Zhang, Regulation of bubble size in flotation: A review, J. Environ. Chem. Eng., 8(2020), art. No. 104070. doi: 10.1016/j.jece.2020.104070
      [5]
      M. Alheshibri, J. Qian, M. Jehannin, and V.S.J. Craig, A history of nanobubbles, Langmuir, 32(2016), No. 43, p. 11086. doi: 10.1021/acs.langmuir.6b02489
      [6]
      N. Ahmed and G.J. Jameson, The effect of bubble size on the rate of flotation of fine particles, Int. J. Miner. Process., 14(1985), No. 3, p. 195. doi: 10.1016/0301-7516(85)90003-1
      [7]
      A.S. Reis, A.M. Reis Filho, L.R. Demuner, and M.A.S. Barrozo, Effect of bubble size on the performance flotation of fine particles of a low-grade Brazilian apatite ore, Powder Technol., 356(2019), p. 884. doi: 10.1016/j.powtec.2019.09.029
      [8]
      Q. Zhang, S. Liu, C. Yang, F. Chen, and S. Lu, Bioreactor consisting of pressurized aeration and dissolved air flotation for domestic wastewater treatment, Sep. Purif. Technol., 138(2014), p. 186. doi: 10.1016/j.seppur.2014.10.024
      [9]
      M. Han, Y. Park, J. Lee, and J. Shim, Effect of pressure on bubble size in dissolved air flotation, Water Supply, 2(2002), No. 5-6, p. 41. doi: 10.2166/ws.2002.0148
      [10]
      W.Q. Qin, L.Y. Ren, P.P. Wang, C.R. Yang, and Y.S. Zhang, Efectro-flotation and collision-attachment mechanism of fine cassiterite, Trans. Nonferrous Met. Soc. China, 22(2012), No. 4, p. 917.
      [11]
      P.K. Tsave, M. Kostoglou, T.D. Karapantsios, and N.K. Lazaridis, A hybrid device for enhancing flotation of fine particles by combining micro-bubbles with conventional bubbles, Minerals, 11(2021), No. 6, art. No. 561. doi: 10.3390/min11060561
      [12]
      S. Calgaroto, K.Q. Wilberg, and J. Rubio, On the nanobubbles interfacial properties and future applications in flotation, Miner. Eng., 60(2014), p. 33. doi: 10.1016/j.mineng.2014.02.002
      [13]
      Z.A. Zhou, Z.H. Xu, J.A. Finch, J.H. Masliyah, and R.S. Chow, On the role of cavitation in particle collection in flotation–A critical review. II, Miner. Eng., 22(2009), No. 5, p. 419. doi: 10.1016/j.mineng.2008.12.010
      [14]
      Y. Chen, S.C. Chelgani, X. Bu, and G. Xie, Effect of the ultrasonic standing wave frequency on the attractive mineralization for fine coal particle flotation, Ultrason. Sonochem., 77(2021), art. No. 105682. doi: 10.1016/j.ultsonch.2021.105682
      [15]
      Y. Peng, Y. Mao, W. Xia, and Y. Li, Ultrasonic flotation cleaning of high-ash lignite and its mechanism, Fuel, 220(2018), p. 558. doi: 10.1016/j.fuel.2018.02.049
      [16]
      M. Kruszelnicki, A. Hassanzadeh, K.J. Legawiec, I. Polowczyk, and P.B. Kowalczuk, Effect of ultrasound pre-treatment on carbonaceous copper-bearing shale flotation, Ultrason. Sonochem., 84(2022), art. No. 105962. doi: 10.1016/j.ultsonch.2022.105962
      [17]
      L.O. Filippov, A.S. Matinin, V.D. Samiguin, and I.V. Filippova, Effect of ultrasound on flotation kinetics in the reactor-separator, J. Phys. Conf. Ser., 416(2013), art. No. 012016. doi: 10.1088/1742-6596/416/1/012016
      [18]
      T. Daio, I. Narita, S. Nandy, T. Hisatomi, K. Domen, and K. Suganuma, Direct observation of hydrogen bubble generation on photocatalyst particles by in situ electron microscopy, Chem. Phys. Lett., 706(2018), p. 564. doi: 10.1016/j.cplett.2018.05.081
      [19]
      G. Shen, X.H. Zhang, Y. Ming, L.J. Zhang, Y. Zhang, and J. Hu, Photocatalytic induction of nanobubbles on TiO2 surfaces, J. Phys. Chem. C, 112(2008), No. 11, p. 4029. doi: 10.1021/jp711850d
      [20]
      W.F. Paxton, K.C. Kistler, C.C. Olmeda, et al., Catalytic nanomotors: Autonomous movement of striped nanorods, J. Am. Chem. Soc., 126(2004), No. 41, p. 13424. doi: 10.1021/ja047697z
      [21]
      M.H. Liu, W.C. Zhao, S. Wang, W. Guo, Y.Z. Tang, and Y.M. Dong, Study on nanobubble generation: Saline solution/water exchange method, ChemPhysChem, 14(2013), No. 11, p. 2589. doi: 10.1002/cphc.201201032
      [22]
      S.T. Lou, J.X. Gao, X.D. Xiao, et al., Studies of nanobubbles produced at liquid/solid interfaces, Mater. Charact., 48(2002), No. 2-3, p. 211. doi: 10.1016/S1044-5803(02)00241-3
      [23]
      W. Guo, H. Shan, M. Guan, L.H. Gao, M.H. Liu, and Y.M. Dong, Investigation on nanobubbles on graphite substrate produced by the water–NaCl solution replacement, Surf. Sci., 606(2012), No. 17-18, p. 1462. doi: 10.1016/j.susc.2012.05.018
      [24]
      G.Z. Kyzas, A.C. Mitropoulos, and K.A. Matis, From microbubbles to nanobubbles: Effect on flotation, Processes, 9(2021), No. 8, art. No. 1287. doi: 10.3390/pr9081287
      [25]
      M. Wu, S.Y. Yuan, H.Y. Song, and X.B. Li, Micro–nano bubbles production using a swirling-type venturi bubble generator, Chem. Eng. Process., 170(2022), art. No. 108697. doi: 10.1016/j.cep.2021.108697
      [26]
      K. Sakamatapan, M. Mesgarpour, O. Mahian, H.S. Ahn, and S. Wongwises, Experimental investigation of the microbubble generation using a venturi-type bubble generator, Case Stud. Therm. Eng., 27(2021), art. No. 101238. doi: 10.1016/j.csite.2021.101238
      [27]
      G. Ding, Z. Li, J. Chen, and X. Cai, An investigation on the bubble transportation of a two-stage series venturi bubble generator, Chem. Eng. Res. Des., 174(2021), p. 345. doi: 10.1016/j.cherd.2021.08.022
      [28]
      F.Y. Ma, D.P. Tao, and Y.J. Tao, Effects of nanobubbles in column flotation of Chinese sub-bituminous coal, Int. J. Coal Prep. Util., 42(2022), No. 4, p. 1126. doi: 10.1080/19392699.2019.1692340
      [29]
      Y. Xiong and F. Peng, Optimization of cavitation venturi tube design for pico and nano bubbles generation, Int. J. Min. Sci. Technol., 25(2015), No. 4, p. 523. doi: 10.1016/j.ijmst.2015.05.002
      [30]
      X. Wang, S. Yuan, J. Liu, Y.M. Zhu, and Y.X. Han, Nanobubble-enhanced flotation of ultrafine molybdenite and the associated mechanism, J. Mol. Liq., 346(2022), art. No. 118312. doi: 10.1016/j.molliq.2021.118312
      [31]
      M. Wu, H.Y. Song, X. Liang, N. Huang, and X.B. Li, Generation of micro–nano bubbles by self-developed swirl-type micro–nano bubble generator, Chem. Eng. Process., 181(2022), art. No. 109136. doi: 10.1016/j.cep.2022.109136
      [32]
      M. Zhao, Y.C. Liu, J.X. Zhang, H. Jiang, and R.Z. Chen, Janus ceramic membranes with asymmetric wettability for high-efficient microbubble aeration, J. Membr. Sci., 671(2023), art. No. 121418. doi: 10.1016/j.memsci.2023.121418
      [33]
      N. Hornig and U. Fritsching, Liquid dispersion in premix emulsification within porous membrane structures, J. Membr. Sci., 514(2016), p. 574. doi: 10.1016/j.memsci.2016.04.051
      [34]
      X.H. Tao, Y.F. Liu, H. Jiang, and R.Z. Chen, Microbubble generation with shear flow on large-area membrane for fine particle flotation, Chem. Eng. Process., 145(2019), art. No. 107671. doi: 10.1016/j.cep.2019.107671
      [35]
      B.Q. Xie, C.J. Zhou, L. Sang, X.D. Ma, and J.S. Zhang, Preparation and characterization of microbubbles with a porous ceramic membrane, Chem. Eng. Process., 159(2021), art. No. 108213. doi: 10.1016/j.cep.2020.108213
      [36]
      L.F. Zhou, L.H. Fu, and Q. Zhang, Efficient flotation column for fine particles, Nonferrous Met., 2007, No. 2, p. 55.
      [37]
      P.P. Zhao and Y.J. Cao, Study status of flotation technology and high effective flotation columns for fine mineral, Met. Mine, 2011, No. 12, p. 78.
      [38]
      G.C. Wang, X.T. Bai, C.N. Wu, W. Li, K. Liu, and A. Kiani, Recent advances in the beneficiation of ultrafine coal particles, Fuel Process. Technol., 178(2018), p. 104. doi: 10.1016/j.fuproc.2018.04.035
      [39]
      S. Li, D.F. Lu, X.H. Chen, et al., Industrial application of a modified pilot-scale Jameson cell for the flotation of spodumene ore in high altitude area, Powder Technol., 320(2017), p. 358. doi: 10.1016/j.powtec.2017.07.070
      [40]
      C. Karagüzel and G. Çobanoğlu, Stage-wise flotation for the removal of colored minerals from feldspathic slimes using laboratory scale Jameson cell, Sep. Purif. Technol., 74(2010), No. 1, p. 100. doi: 10.1016/j.seppur.2010.05.012
      [41]
      A. Gordiychuk, M. Svanera, S. Benini, and P. Poesio, Size distribution and sauter mean diameter of micro bubbles for a Venturi type bubble generator, Exp. Therm. Fluid Sci., 70(2016), p. 51. doi: 10.1016/j.expthermflusci.2015.08.014
      [42]
      M. Uçurum, Influences of Jameson flotation operation variables on the kinetics and recovery of unburned carbon, Powder Technol., 191(2009), No. 3, p. 240. doi: 10.1016/j.powtec.2008.10.014
      [43]
      Y.L. Han, J.B. Zhu, L. Shen, et al., Bubble size distribution characteristics of a jet-stirring coupling flotation device, Minerals, 9(2019), No. 6, art. No. 369. doi: 10.3390/min9060369
      [44]
      C.Wang, Z.Wang, X.Wei, and X. Li, A numerical studyand flotation experiments of bicyclone column flotation for treating of produced water from ASPflooding, J. Water Process Eng., 32(2019), p. 100972.
      [45]
      X.P. Sun, W.L. Liu, W.S. Wang, S. Chen, and W. Liu, Study on particle size distribution law of air flotation bubble and its influencing factors in coal slime flotation, Coal Sci. Technol., 47(2019), No. 4, p. 205.
      [46]
      Z.Huang,J. Kuang, L. Zhu, W.Yuan, and Z. Zou, Effect ofultrasonication on the separation kinetics of scheelite andcalcite, Miner. Eng.,163(2021), art. No.106762.
      [47]
      W. Zhao, J.Z. Qu, Z. Li, Z.Y. Yang, and A.N. Zhou, Influencing factors of electroflotation–electrocoagulation seperation of coal macerals, Clean Coal Technol., 24(2018), No. 1, p. 57.
      [48]
      H.L. Yang, C.Y. Zhu, L. Yi, and X.M. Wu, Research present situation and new progress of flotation column for fine paticles, Hunan Nonferrous Met., 30(2014), No. 5, p. 11.
      [49]
      H.J. Zhang, J.T. Liu, Y.T. Wang, Y.J. Cao, Z.L. Ma, and X.B. Li, Cyclonic-static micro-bubble flotation column, Miner. Eng., 45(2013), p. 1. doi: 10.1016/j.mineng.2013.01.006
      [50]
      X.K. Yan, S.Q. Meng, A. Wang, L.J. Wang, and Y.J. Cao, Hydrodynamics and separation regimes in a cyclonic-static microbubble flotation column, Asia Pac. J. Chem. Eng., 13(2018), No. 3, art. No. e2185. doi: 10.1002/apj.2185
      [51]
      X.K. Yan, R. Shi, Y.J. Xu, et al., Bubble behaviors in a lab-scale cyclonic-static micro-bubble flotation column, Asia Pac. J. Chem. Eng., 11(2016), No. 6, p. 939. doi: 10.1002/apj.2028
      [52]
      J.D. Miller, Characterization of multiphase fluid flow during air-sparged hydrocyclone flotation by X-ray CT, Utah University, Salt Lake City, 1993.
      [53]
      Q. Zhou, Y.J. Cao, X.B. Li, G.P. Niu, and Y.H. Liu, Study on cyclone-static micro-bubble flotation column of scheelite ores, Nonferrous Met. Miner. Process. Sect., 2011, No. 1, p. 39.
      [54]
      X.W. Deng, J.T. Liu, Y.T. Wang, and Y.J. Cao, Velocity distribution of the flow field in the cyclonic zone of cyclone-static micro-bubble flotation column, Int. J. Min. Sci. Technol., 23(2013), No. 1, p. 89. doi: 10.1016/j.ijmst.2013.01.013
      [55]
      M.J. Zhao, J.J. Fang, G.D. Li, L. Zhang, and T.M. Zhang, State and application of cyclonic static microbubble flotation column, Multipurp. Util. Miner. Resour., 2016, No. 4, p. 6.
      [56]
      S.A. Idlas, J.A. Fitzpatrick, and J.C. Slattery, Conceptual design of packed flotation columns, Ind. Eng. Chem. Res., 29(1990), No. 6, p. 943. doi: 10.1021/ie00102a002
      [57]
      M. Zhang, T. Li, and G. Wang, A CFD study of the flow characteristics in a packed flotation column: Implications for flotation recovery improvement, Int. J. Miner. Process., 159(2017), p. 60. doi: 10.1016/j.minpro.2017.01.004
      [58]
      B. Wang and H. Jiang, Research and application of flotation column, Chin. J. Nonferrous Met., 31(2021), No. 4, p. 1027.
      [59]
      Z.M. Sun, C.J. Liu, G.C. Yu, and X.G. Yuan, Prediction of distillation column performance by computational mass transfer method, Chin. J. Chem. Eng., 19(2011), No. 5, p. 833. doi: 10.1016/S1004-9541(11)60063-3
      [60]
      W.Z. Wang, L.P. Chen, L.B. Zhao, and F.P. Li, Experimental research for application of packed flotation column to reverse flotation of hematite, Min. Process. Equip., 42(2014), No. 2, p. 97.
      [61]
      P.Y. Zhang, S.Z. Jin, L.M. Ou, W.C. Zhang, and Y.T. Zhu, Fine bauxite recovery using a plate-packed flotation column, Metals, 10(2020), No. 9, art. No. 1184. doi: 10.3390/met10091184
      [62]
      M. Zhang, T.L. Li, S.J. Ma, and G.C. Wang, An experimental study of copper sulfide flotation in a packed cyclonic-static microbubble flotation column, Sep. Sci. Technol., 53(2018), No. 14, p. 2238. doi: 10.1080/01496395.2018.1447963
      [63]
      T.S. He and B.C. Chen, Discussion on fine particle flotation equipment, China Min. Mag., 3(1994), No. 4, p. 31.
      [64]
      T. Yalcin, Magnetoflotation: Development and laboratory assessment, Int. J. Miner. Process., 34(1992), No. 1-2, p. 119. doi: 10.1016/0301-7516(92)90019-S
      [65]
      S.X. Shi, L.J. Yang, Z.C. Shen, and S.J. Lu, Research status of fine particle flotation beneficiation methods and equipment, [in] Proceedings of the Proceedings of the Fifth National Conference on Mining and Dressing Technology Progress, Hohhot, 2006, p. 121.
      [66]
      Z.C. Shen, D. Chen, S.X. Shi, S.J. Lu, and L. Meng, Development of BGRIMM flotation column technology, Nonferrous Met. Miner. Process. Sect., 2006, No. 6, p. 33.
      [67]
      R.D. Deng, Q.J. Liu, T. Hu, and F.H. Ye, Concentration of high-sulfur copper ore using a three-product magnetic flotation column, Min. Metall. Explor., 30(2013), No. 2, p. 122.
      [68]
      Y. Liao, Z. Ma, and Y. Cao, Improving reverse flotation of magnetite ore using pulse magnetic field, Miner. Eng., 138(2019), p. 108. doi: 10.1016/j.mineng.2019.04.042
      [69]
      X.X. Tao, Y.J. Cao, J. Liu, K.Y. Shi, J.Y. Liu, and M.M. Fan, Studies on characteristics and flotation of a hard-to-float high-ash fine coal, Procedia Earth Planet. Sci., 1(2009), No. 1, p. 799. doi: 10.1016/j.proeps.2009.09.126
      [70]
      G.J. Jameson, New directions in flotation machine design, Miner. Eng., 23(2010), No. 11-13, p. 835. doi: 10.1016/j.mineng.2010.04.001
      [71]
      G.Q. Xu, Y.R. Chen, X.N. Bu, X.S. Dong, G.Y. Xie, and Y.J. Sun, Separation performance of mechanical flotation cell and cyclonic microbubble flotation column: In terms of the beneficiation of high-ash coal fines, Energy Sources A, 42(2020), No. 23, p. 2845. doi: 10.1080/15567036.2019.1618994
      [72]
      M.M. Fan, D. Tao, R. Honaker, and Z.F. Luo, Nanobubble generation and its applications in froth flotation (Part IV): Mechanical cells and specially designed column flotation of coal, Min. Sci. Technol. China, 20(2010), No. 5, p. 641. doi: 10.1016/S1674-5264(09)60259-3
      [73]
      C.W. Li, M. Xu, Y.W. Xing, H.J. Zhang, and U.A. Peuker, Efficient separation of fine coal assisted by surface nanobubbles, Sep. Purif. Technol., 249(2020), art. No. 117163. doi: 10.1016/j.seppur.2020.117163
      [74]
      A. Sobhy and D.P. Tao, Nanobubble column flotation of fine coal particles and associated fundamentals, Int. J. Miner. Process., 124(2013), p. 109. doi: 10.1016/j.minpro.2013.04.016
      [75]
      Z. Zhang, L. Ren, and Y. Zhang, Role of nanobubbles in the flotation of fine rutile particles, Miner. Eng., 172(2021), art. No. 107140. doi: 10.1016/j.mineng.2021.107140
      [76]
      D. Tao, Z. Wu, and A. Sobhy, Investigation of nanobubble enhanced reverse anionic flotation of hematite and associated mechanisms, Powder Technol., 379(2021), p. 12. doi: 10.1016/j.powtec.2020.10.040
      [77]
      G.X. Fan, J.T. Liu, Y.J. Cao, and T. Huo, Optimization of fine ilmenite flotation performed in a cyclonic-static micro-bubble flotation column, Physicochem. Probl. Miner. Pro., 50(2014), No. 2, p. 823.
      [78]
      R. Ahmadi, D.A. Khodadadi, M. Abdollahy, and M.M. Fan, Nano–microbubble flotation of fine and ultrafine chalcopyrite particles, Int. J. Min. Sci. Technol., 24(2014), No. 4, p. 559. doi: 10.1016/j.ijmst.2014.05.021
      [79]
      R. Ahmadi and A. Darban, Modeling and optimization of nano-bubble generation process using response surface methodology, Int. J. Nanosci. Nanotechnol., 9(2013), p. 151.
      [80]
      Y. Cheng, Y.S. Song, B. Li, and Q.Q. Wang, Experimental research on the column flotation of micro-fine pyrite particles, Met. Mine, 2009, No. 6, p. 64.
      [81]
      V. Chipakwe, A. Sand, and S.C. Chelgani, Nanobubble assisted flotation separation of complex Pb–Cu–Zn sulfide ore-Assessment of process readiness, Sep. Sci. Technol., 57(2022), No. 8, p. 1351. doi: 10.1080/01496395.2021.1981942
      [82]
      Y.C. Cao, G.Y. Huang, L.Y. Yang, S.W. Liu, and Q.X. Deng, Experimental study on flotation of some copper ore by using crimm flotation cell, Hunan Nonferrous Met., 33(2017), No. 4, p. 11.
      [83]
      P.G. Wei, L.Y. Ren, Y.M. Zhang, and S.X. Bao, Influence of microbubble on fine wolframite flotation, Minerals, 11(2021), No. 10, art. No. 1079. doi: 10.3390/min11101079
      [84]
      J.R. Zhang, Dispersion Behavior and Mechanism of Micro-fine Fluorite and Quartz [Dissertation], Inner Mongolia University of Science and Technology, Inner Mongolia Autonomous Region, 2021.
      [85]
      Y.T. Wang, The application and development of microbubble column flotation technology in China, Adv. Mater. Res., 136(2010), p. 194. doi: 10.4028/www.scientific.net/AMR.136.194
      [86]
      W.S. Chen, J.T. Liu, X.B. Li, Y.J. Cao, and Y.T. Wang, Analysis of factors influencing fluorite flotation by cyclonic static micro-bubble flotation column, Met. Mine, 2008, No. 5, p. 100.
      [87]
      S. Farrokhpay, I. Filippova, L. Filippov, A. Picarra, N. Rulyov, and D. Fornasiero, Flotation of fine particles in the presence of combined microbubbles and conventional bubbles, Miner. Eng., 155(2020), art. No. 106439. doi: 10.1016/j.mineng.2020.106439
      [88]
      S. Calgaroto, A. Azevedo, and J. Rubio, Flotation of quartz particles assisted by nanobubbles, Int. J. Miner. Process., 137(2015), p. 64. doi: 10.1016/j.minpro.2015.02.010
      [89]
      A.F. Rosa and J. Rubio, On the role of nanobubbles in particle–bubble adhesion for the flotation of quartz and apatitic minerals, Miner. Eng., 127(2018), p. 178. doi: 10.1016/j.mineng.2018.08.020
      [90]
      X.N. Bu, G.Y. Xie, Y.L. Peng, and Y.R. Chen, Corrigendum to “Kinetic modeling and optimization of flotation process in a cyclonic microbubble flotation column using composite central design methodology”, Int. J. Miner. Process., 157(2016), p. 175. doi: 10.1016/j.minpro.2016.11.006
      [91]
      F. Ma, D. Tao, Y. Tao, and S. Liu, An innovative flake graphite upgrading process based on HPGR, stirred grinding mill, and nanobubble column flotation, Int. J. Min. Sci. Technol., 31(2021), No. 6, p. 1063. doi: 10.1016/j.ijmst.2021.06.005
      [92]
      W. Liu, Application of Jameson flotation machine in coking coal preparation plant, Coal Chem. Ind., 41(2018), No. 3, p. 129.
      [93]
      Y. Liu, Y.J. Cao, G. Huang, J. Dong, and W.J. Zou, Semi-industrial test of a gold ore slime separation by cyclonic-static micro-bubble flotation column, Met. Mine, 2012, No. 3, p. 82.
      [94]
      Y.F. Zhu, J.T. Liu, Y.J. Cao, and Y.T. Wang, Experimental study on copper cleaning by using cyclonic-static micro-bubble flotation column, China Mine Eng., 40(2011), No. 3, p. 13.
      [95]
      W.Z. Wang, M.M. Han, and C.G. Yang, Applied research of cyclonic-static micro-bubble flotation column on the microfine hematite flotation, Adv. Mater. Res., 641(2013), p. 242.
      [96]
      G.S. Zheng, J.T. Liu, L. Li, Z.J. Zhang, and H.W. Qian, Reverse flotation of the iron concentrate from magnetic separation by cyclonic static micro-bubble flotation column, Met. Mine, 2008, No. 8, p. 40.
      [97]
      H.J. Qin, H.J. Zhang, C. He, X.T. Gao, and X. Ma, Study on the recovery of molybdenum in molybdenum cleaner tailings using cyclonic-static microbubble flotation column, China Molybdenum Ind., 40(2016), No. 4, p. 6.
      [98]
      T.T. Zhang, Y.L. Peng, G.Y. Xie, Y.R. Chen, and X.N. Bu, Experiment of flotation of microcrystalline graphite by cyclonic micro-bubble flotation column and flotator, Non Met. Mines, 40(2017), No. 1, p. 7.
      [99]
      L.M. Ou, L.J. Wang, Q.M. Feng, L. Wan, and J.S. Ye, Beneficiation of middle-low grade bauxite with micro-bubble flotation column, Min. Metall. Eng., 31(2011), No. 3, p. 40.
      [100]
      R.C. Santana, J.A. Ribeiro, M.A. Santos, A.S. Reis, C.H. Ataíde, and M.A.S. Barrozo, Flotation of fine apatitic ore using microbubbles, Sep. Purif. Technol., 98(2012), p. 402. doi: 10.1016/j.seppur.2012.06.014
      [101]
      D.P. Tao, M.M. Fan, Z.X. Wu, X.Y. Zhang, Q.S. Wang, and Z.K. Li, Investigation of effects of nanobubbles on phosphate ore flotation, Int. J. Georesources Environ., 4(2018), No. 3, p. 133.
      [102]
      C. Li and H. Zhang, Surface nanobubbles and their roles in flotation of fine particles-A review, J. Ind. Eng. Chem., 106(2022), p. 37. doi: 10.1016/j.jiec.2021.11.009
      [103]
      M. Buchmann, G. Öktem, M. Rudolph, and K.G.V. den Boogaart, Proposition of a bubble-particle attachment model based on DLVO van der Waals and electric double layer interactions for froth flotation modelling, Physicochem. Probl. Miner. Pro., 58(2022), No. 5.
      [104]
      P. Knüpfer, L. Ditscherlein, and U.A. Peuker, Nanobubble enhanced agglomeration of hydrophobic powders, Colloids Surf. A, 530(2017), p. 117. doi: 10.1016/j.colsurfa.2017.07.056
      [105]
      M.A. Hampton and A.V. Nguyen, Nanobubbles and the nanobubble bridging capillary force, Adv. Colloid Interface Sci., 154(2010), No. 1-2, p. 30. doi: 10.1016/j.cis.2010.01.006
      [106]
      N.N. Rulyov, Combined microflotation of fine minerals: Theory and experiment, Miner. Process. Extr. Metall., 125(2016), No. 2, p. 81. doi: 10.1080/03719553.2016.1156303
      [107]
      L. Ditscherlein, P. Knüpfer, and U.A. Peuker, The influence of nanobubbles on the interaction forces between alumina particles and ceramic foam filters, Powder Technol., 357(2019), p. 408. doi: 10.1016/j.powtec.2019.08.077
      [108]
      C.W. Li, K.K. Zhen, Y.N. Hao, and H.J. Zhang, Effect of dissolved gases in natural water on the flotation behavior of coal, Fuel, 233(2018), p. 604. doi: 10.1016/j.fuel.2018.06.104
      [109]
      T.B. Zhang and Q. Zhang, Research of nanobubbles enhanced reverse anionic flotation of a mid-low grade phosphate ore, Physicochem. Probl. Miner. Pro., 58(2022).
      [110]
      E. Bird and Z. Liang, Nanobubble capillary force between parallel plates, Phys. Fluids, 34(2022), No. 1, art. No. 013301. doi: 10.1063/5.0075962
      [111]
      F.F. Zhang, L.J. Sun, H.C. Yang, et al., Recent advances for understanding the role of nanobubbles in particles flotation, Adv. Colloid Interface Sci., 291(2021), art. No. 102403. doi: 10.1016/j.cis.2021.102403
      [112]
      W.G. Zhou, L.M. Ou, Q. Shi, Q.M. Feng, and H. Chen, Different flotation performance of ultrafine scheelite under two hydrodynamic cavitation modes, Minerals, 8(2018), No. 7, art. No. 264. doi: 10.3390/min8070264
      [113]
      L.Y. Ren, W.N. Zeng, Z.Y. Zhang, and P.G. Wei, Visualization of effect of micro–nano bubbles on aggregation of fine cassiterite, Chin. J. Nonferrous Met., 32(2022), No. 5, p. 1479.
      [114]
      H. An, G. Liu, and V.S. Craig, Wetting of nanophases: Nanobubbles, nanodroplets and micropancakes on hydrophobic surfaces, Adv. Colloid Interface Sci., 222(2015), p. 9. doi: 10.1016/j.cis.2014.07.008
      [115]
      D.J. Johnson, S.A. Al Malek, B.A.M. Al-Rashdi, and N. Hilal, Atomic force microscopy of nanofiltration membranes: Effect of imaging mode and environment, J. Membr. Sci., 389(2012), p. 486. doi: 10.1016/j.memsci.2011.11.023
      [116]
      V.S.J. Craig, Very small bubbles at surfaces-the nanobubble puzzle, Soft Matter, 7(2011), No. 1, p. 40. doi: 10.1039/C0SM00558D
      [117]
      F.Y. Ma, P. Zhang, and D.P. Tao, Surface nanobubble characterization and its enhancement mechanisms for fine-particle flotation: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 727. doi: 10.1007/s12613-022-2450-3
      [118]
      Y.W. Liu and X.R. Zhang, A review of recent theoretical and computational studies on pinned surface nanobubbles, Chin. Phys. B, 27(2018), No. 1, art. No. 014401. doi: 10.1088/1674-1056/27/1/014401
      [119]
      D. Tao, Recent advances in fundamentals and applications of nanobubble enhanced froth flotation: A review, Miner. Eng., 183(2022), art. No. 107554. doi: 10.1016/j.mineng.2022.107554
      [120]
      S. Ljunggren and J.C. Eriksson, The lifetime of a colloid-sized gas bubble in water and the cause of the hydrophobic attraction, Colloids Surf. A, 129-130(1997), p. 151. doi: 10.1016/S0927-7757(97)00033-2
      [121]
      N. Ishida, T. Inoue, M. Miyahara, and K. Higashitani, Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy, Langmuir, 16(2000), No. 16, p. 6377. doi: 10.1021/la000219r
      [122]
      A. Azevedo, R. Etchepare, S. Calgaroto, and J. Rubio, Aqueous dispersions of nanobubbles: Generation, properties and features, Miner. Eng., No.(2016), p. 29.
      [123]
      W.A. Ducker, Contact angle and stability of interfacial nanobubbles, Langmuir, 25(2009), No. 16, p. 8907. doi: 10.1021/la902011v
      [124]
      N.D. Petsev, M.S. Shell, and L.G. Leal, Dynamic equilibrium explanation for nanobubbles' unusual temperature and saturation dependence, Phys. Rev. E, 88(2013), No. 1, art. No. 010402. doi: 10.1103/PhysRevE.88.010402
      [125]
      H. Peng, G.R. Birkett, and A.V. Nguyen, Origin of interfacial nanoscopic gaseous domains and formation of dense gas layer at hydrophobic solid–water interface, Langmuir, 29(2013), No. 49, p. 15266. doi: 10.1021/la403187p
      [126]
      H. Peng, G.R. Birkett, and A.V. Nguyen, Progress on the surface nanobubble story: What is in the bubble? Why does it exist? Adv. Colloid Interface Sci., 222(2015), p. 573. doi: 10.1016/j.cis.2014.09.004
      [127]
      P.E. Theodorakis and Z.Z. Che, Surface nanobubbles: Theory, simulation, and experiment. A review, Adv. Colloid Interface Sci., 272(2019), art. No. 101995. doi: 10.1016/j.cis.2019.101995
      [128]
      J.R.T. Seddon, H.J.W. Zandvliet, and D. Lohse, Knudsen gas provides nanobubble stability, Phys. Rev. Lett., 107(2011), No. 11, art. No. 116101. doi: 10.1103/PhysRevLett.107.116101

    Catalog


    • /

      返回文章
      返回