Cite this article as:

Nasrin Sedaghati, Aziz Habibi-Yangjeh, and Alireza Khataee, Fabrication of g-C3N4 nanosheet/Bi5O7Br/NH2-MIL-88B (Fe) nanocomposites: Double S-scheme photocatalysts with impressive performance for the removal of antibiotics under visible light, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp.1363-1374. https://dx.doi.org/10.1007/s12613-023-2618-5
Nasrin Sedaghati, Aziz Habibi-Yangjeh, and Alireza Khataee, Fabrication of g-C3N4 nanosheet/Bi5O7Br/NH2-MIL-88B (Fe) nanocomposites: Double S-scheme photocatalysts with impressive performance for the removal of antibiotics under visible light, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp.1363-1374. https://dx.doi.org/10.1007/s12613-023-2618-5
引用本文 PDF XML SpringerLink

g-C3N4纳米片/Bi5O7Br/NH2-MIL-88B(Fe)纳米复合材料的制备:双S异质结光催化剂优异的抗生素去除性能

摘要: 通过简单的溶热方法合成了具有双S型异质结的新型g-C3N4纳米片/Bi5O7Br/NH2-MIL-88B(Fe)光催化剂(记为GCN-NSh/Bi5O7Br/Fe-MOF,其中MOF是金属–有机框架),并通过X射线光电子能谱仪(XPS)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能量色散X射线光谱法(EDX)、透射电子显微镜(TEM)、高分辨率透射电子显微镜法(HRTEM)、光致发光光谱法(PL)、傅立叶变换红外光谱法(FT-IR),UV-Vis漫反射光谱(UV-Vis DRS)、光电流密度、电化学阻抗光谱(EIS)和Brunauer–Emmett–Teller(BET)进行分析。结果表明,将Fe-MOF与GCN-NSh/Bi5O7Br复合后,与纯GCN相比,最佳Fe-MOF含量为15wt%的GCN-NSh/Bi5O7Br/Fe-MOF纳米复合材料对四环素的去除常数提高了33倍,且GCN-NSh/Bi5O7Br/Fe-MOF(15wt%)纳米复合材料对阿奇霉素、甲硝唑和头孢氨苄的去除分别是纯GCN的36.4倍、20.2倍和14.6倍。此外,该纳米复合材料在连续4次循环后保持了优异的活性。基于n-GCN-NSh、n-Bi5O7Br和n-Fe-MOF半导体之间n–n异质结的发展,双S方案电荷转移机制被用于抗生素的有效去除。

 

Fabrication of g-C3N4 nanosheet/Bi5O7Br/NH2-MIL-88B (Fe) nanocomposites: Double S-scheme photocatalysts with impressive performance for the removal of antibiotics under visible light

Abstract: Novel graphitic carbon nitride (g-C3N4) nanosheet/Bi5O7Br/NH2-MIL-88B (Fe) photocatalysts (denoted as GCN-NSh/Bi5O7Br/Fe-MOF, in which MOF is metal–organic framework) with double S-scheme heterojunctions were synthesized by a facile solvothermal route. The resultant materials were examined by X-ray photoelectron spectrometer (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence spectroscopy (PL), Fourier transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflection spectroscopy (UV-vis DRS), photocurrent density, electrochemical impedance spectroscopy (EIS), and Brunauer–Emmett–Teller (BET) analyses. After the integration of Fe-MOF with GCN-NSh/Bi5O7Br, the removal constant of tetracycline over the optimal GCN-NSh/Bi5O7Br/Fe-MOF (15wt%) nanocomposite was promoted 33 times compared with that of the pristine GCN. The GCN-NSh/Bi5O7Br/Fe-MOF (15wt%) nanocomposite showed superior photoactivity to azithromycin, metronidazole, and cephalexin removal that was 36.4, 20.2, and 14.6 times higher than that of pure GCN, respectively. Radical quenching tests showed that O_2^- and h+ mainly contributed to the elimination reaction. In addition, the nanocomposite maintained excellent activity after 4 successive cycles. Based on the developed n–n heterojunctions among n-GCN-NSh, n-Bi5O7Br, and n-Fe-MOF semiconductors, the double S-scheme charge transfer mechanism was proposed for the destruction of the selected antibiotics.

 

/

返回文章
返回