留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 7
Jul.  2023

图(9)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1521
  • HTML全文浏览量:  446
  • PDF下载量:  67
  • 被引次数: 0
Nasrin Sedaghati, Aziz Habibi-Yangjeh,  and Alireza Khataee, Fabrication of g-C3N4 nanosheet/Bi5O7Br/NH2-MIL-88B (Fe) nanocomposites: Double S-scheme photocatalysts with impressive performance for the removal of antibiotics under visible light, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1363-1374. https://doi.org/10.1007/s12613-023-2618-5
Cite this article as:
Nasrin Sedaghati, Aziz Habibi-Yangjeh,  and Alireza Khataee, Fabrication of g-C3N4 nanosheet/Bi5O7Br/NH2-MIL-88B (Fe) nanocomposites: Double S-scheme photocatalysts with impressive performance for the removal of antibiotics under visible light, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1363-1374. https://doi.org/10.1007/s12613-023-2618-5
引用本文 PDF XML SpringerLink
研究论文

g-C3N4纳米片/Bi5O7Br/NH2-MIL-88B(Fe)纳米复合材料的制备:双S异质结光催化剂优异的抗生素去除性能

  • 通讯作者:

    Aziz Habibi-Yangjeh    E-mail: ahabibi@uma.ac.ir

文章亮点

  • (1)制备了新型双S型异质结结构g-C3N4纳米片/Bi5O7Br/NH2-MIL-88B(Fe)光催化剂
  • (2)新型结构表现出优异的光催化性能
  • (3)提出双S方案电荷转移机制
  • 通过简单的溶热方法合成了具有双S型异质结的新型g-C3N4纳米片/Bi5O7Br/NH2-MIL-88B(Fe)光催化剂(记为GCN-NSh/Bi5O7Br/Fe-MOF,其中MOF是金属–有机框架),并通过X射线光电子能谱仪(XPS)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能量色散X射线光谱法(EDX)、透射电子显微镜(TEM)、高分辨率透射电子显微镜法(HRTEM)、光致发光光谱法(PL)、傅立叶变换红外光谱法(FT-IR),UV-Vis漫反射光谱(UV-Vis DRS)、光电流密度、电化学阻抗光谱(EIS)和Brunauer–Emmett–Teller(BET)进行分析。结果表明,将Fe-MOF与GCN-NSh/Bi5O7Br复合后,与纯GCN相比,最佳Fe-MOF含量为15wt%的GCN-NSh/Bi5O7Br/Fe-MOF纳米复合材料对四环素的去除常数提高了33倍,且GCN-NSh/Bi5O7Br/Fe-MOF(15wt%)纳米复合材料对阿奇霉素、甲硝唑和头孢氨苄的去除分别是纯GCN的36.4倍、20.2倍和14.6倍。此外,该纳米复合材料在连续4次循环后保持了优异的活性。基于n-GCN-NSh、n-Bi5O7Br和n-Fe-MOF半导体之间n–n异质结的发展,双S方案电荷转移机制被用于抗生素的有效去除。
  • Research Article

    Fabrication of g-C3N4 nanosheet/Bi5O7Br/NH2-MIL-88B (Fe) nanocomposites: Double S-scheme photocatalysts with impressive performance for the removal of antibiotics under visible light

    + Author Affiliations
    • Novel graphitic carbon nitride (g-C3N4) nanosheet/Bi5O7Br/NH2-MIL-88B (Fe) photocatalysts (denoted as GCN-NSh/Bi5O7Br/Fe-MOF, in which MOF is metal–organic framework) with double S-scheme heterojunctions were synthesized by a facile solvothermal route. The resultant materials were examined by X-ray photoelectron spectrometer (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence spectroscopy (PL), Fourier transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflection spectroscopy (UV-vis DRS), photocurrent density, electrochemical impedance spectroscopy (EIS), and Brunauer–Emmett–Teller (BET) analyses. After the integration of Fe-MOF with GCN-NSh/Bi5O7Br, the removal constant of tetracycline over the optimal GCN-NSh/Bi5O7Br/Fe-MOF (15wt%) nanocomposite was promoted 33 times compared with that of the pristine GCN. The GCN-NSh/Bi5O7Br/Fe-MOF (15wt%) nanocomposite showed superior photoactivity to azithromycin, metronidazole, and cephalexin removal that was 36.4, 20.2, and 14.6 times higher than that of pure GCN, respectively. Radical quenching tests showed that O${}_2^- $ and h+ mainly contributed to the elimination reaction. In addition, the nanocomposite maintained excellent activity after 4 successive cycles. Based on the developed n–n heterojunctions among n-GCN-NSh, n-Bi5O7Br, and n-Fe-MOF semiconductors, the double S-scheme charge transfer mechanism was proposed for the destruction of the selected antibiotics.
    • loading
    • [1]
      L. Xu, H. Zhang, P. Xiong, Q. Zhu, C. Liao, and G. Jiang, Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review, Sci. Total Environ., 753(2021), art. No. 141975. doi: 10.1016/j.scitotenv.2020.141975
      [2]
      X.W. Tang, R.D. Tang, S. Xiong, et al., Application of natural minerals in photocatalytic degradation of organic pollutants: A review, Sci. Total Environ., 812(2022), art. No. 152434. doi: 10.1016/j.scitotenv.2021.152434
      [3]
      C.C. Long, Z.X. Jiang, J.F. Shangguan, T.P. Qing, P. Zhang, and B. Feng, Applications of carbon dots in environmental pollution control: A review, Chem. Eng. J., 406(2021), art. No. 126848. doi: 10.1016/j.cej.2020.126848
      [4]
      Y.H. Wen, M.B. Feng, P. Zhang, H.C. Zhou, V.K. Sharma, and X.M. Ma, Metal organic frameworks (MOFs) as photocatalysts for the degradation of agricultural pollutants in water, ACS EST Eng., 1(2021), No. 5, p. 804. doi: 10.1021/acsestengg.1c00051
      [5]
      V. Dutta, S. Sharma, P. Raizada, et al., An overview on WO3 based photocatalyst for environmental remediation, J. Environ. Chem. Eng., 9(2021), No. 1, art. No. 105018. doi: 10.1016/j.jece.2020.105018
      [6]
      S. Asadzadeh-Khaneghah and A. Habibi-Yangjeh, g-C3N4/carbon dot-based nanocomposites serve as efficacious photocatalysts for environmental purification and energy generation: A review, J. Cleaner Prod., 276(2020), art. No. 124319. doi: 10.1016/j.jclepro.2020.124319
      [7]
      M.L. Zhang, Y. Yang, X.Q. An, and L.A. Hou, A critical review of g-C3N4-based photocatalytic membrane for water purification, Chem. Eng. J., 412(2021), art. No. 128663. doi: 10.1016/j.cej.2021.128663
      [8]
      V. Hasija, V.H. Nguyen, A. Kumar, et al., Advanced activation of persulfate by polymeric g-C3N4 based photocatalysts for environmental remediation: A review, J. Hazard. Mater., 413(2021), art. No. 125324. doi: 10.1016/j.jhazmat.2021.125324
      [9]
      K. Sridharan, S. Shenoy, S.G. Kumar, C. Terashima, A. Fujishima, and S. Pitchaimuthu, Advanced two-dimensional heterojunction photocatalysts of stoichiometric and non-stoichiometric bismuth oxyhalides with graphitic carbon nitride for sustainable energy and environmental applications, Catalysts, 11(2021), No. 4, art. No. 426. doi: 10.3390/catal11040426
      [10]
      P.S. Li, S. Gao, Q.M. Liu, et al., Recent progress of the design and engineering of bismuth oxyhalides for photocatalytic nitrogen fixation, Adv. Energy Sustainability Res., 2(2021), No. 5, art. No. 2000097. doi: 10.1002/aesr.202000097
      [11]
      D. Mukherjee, B. Van der Bruggen, and B. Mandal, Advancements in visible light responsive MOF composites for photocatalytic decontamination of textile wastewater: A review, Chemosphere, 295(2022), art. No. 133835. doi: 10.1016/j.chemosphere.2022.133835
      [12]
      Y.H. Wen, P. Zhang, V.K. Sharma, X.M. Ma, and H.C. Zhou, Metal-organic frameworks for environmental applications, Cell Rep. Phys. Sci., 2(2021), No. 2, art. No. 100348. doi: 10.1016/j.xcrp.2021.100348
      [13]
      T.J. Qiu, Z.B. Liang, W.H. Guo, H. Tabassum, S. Gao, and R.Q. Zou, Metal–organic framework-based materials for energy conversion and storage, ACS Energy Lett., 5(2020), No. 2, p. 520. doi: 10.1021/acsenergylett.9b02625
      [14]
      C. Zhao, X. Pan, Z. Wang, and C.C. Wang, 1 + 1 > 2: A critical review of MOF/bismuth-based semiconductor composites for boosted photocatalysis, Chem. Eng. J., 417(2021), art. No. 128022. doi: 10.1016/j.cej.2020.128022
      [15]
      C. Zhang, Y. Li, D. Shuai, Y. Shen, W. Xiong, and L. Wang, Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: A review, Chemosphere, 214(2019), p. 462. doi: 10.1016/j.chemosphere.2018.09.137
      [16]
      S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, D. Seifzadeh, H. Chand, and V. Krishnan, Visible-light-activated g-C3N4 nanosheet/carbon dot/FeOCl nanocomposites: Photodegradation of dye pollutants and tetracycline hydrochloride, Colloids Surf. A, 617(2021), art. No. 126424. doi: 10.1016/j.colsurfa.2021.126424
      [17]
      M. Sabri, A. Habibi-Yangjeh, and A. Khataee, Nanoarchitecturing TiO2/NiCr2O4 p–n heterojunction photocatalysts for visible-light-induced activation of persulfate to remove tetracycline hydrochloride, Chemosphere, 300(2022), art. No. 134594. doi: 10.1016/j.chemosphere.2022.134594
      [18]
      Z. Feng, L. Zeng, Q. Zhang, et al., In situ preparation of g-C3N4/Bi4O5I2 complex and its elevated photoactivity in Methyl Orange degradation under visible light, J. Environ. Sci., 87(2020), p. 149. doi: 10.1016/j.jes.2019.05.032
      [19]
      M. Wang, P. Guo, Y. Zhang, et al., Eu doped g-C3N4 nanosheet coated on flower-like BiVO4 powders with enhanced visible light photocatalytic for tetracycline degradation, Appl. Surf. Sci., 453(2018), p. 11. doi: 10.1016/j.apsusc.2018.05.084
      [20]
      H.M. Xu, Y.W. Hu, D. Huang, et al., Glucose-induced formation of oxygen vacancy and Bi-metal comodified Bi5O7Br nanotubes for efficient performance photocatalysis, ACS Sustainable Chem. Eng., 7(2019), No. 6, p. 5784. doi: 10.1021/acssuschemeng.8b05336
      [21]
      F. Chen, H. Wang, H. Hu, et al., Construction of NH2-MIL-101(Fe)/g-C3N4 hybrids based on interfacial Lewis acid-base interaction and its enhanced photocatalytic redox capability, Colloids Surf. A, 631(2021), art. No. 127710. doi: 10.1016/j.colsurfa.2021.127710
      [22]
      D. Gu, S. Zhang, T. Jiang, H. Jiang, X. Wang, and B. Wang, Positive P/g-C3N4 thermo-coupled photocatalytic oxidation of refractory organics in wastewater for total utilization of solar Vis-IR region, Mater. Chem. Phys., 253(2020), art. No. 123307. doi: 10.1016/j.matchemphys.2020.123307
      [23]
      R. Rajendran, S. Vignesh, A. Sasireka, et al., Designing Ag2O modified g-C3N4/TiO2 ternary nanocomposites for photocatalytic organic pollutants degradation performance under visible light: Synergistic mechanism insight, Colloids Surf. A, 629(2021), art. No. 127472. doi: 10.1016/j.colsurfa.2021.127472
      [24]
      N.A. Mohamed, A.F. Ismail, J. Safaei, M.R. Johan, and M.A.M. Teridi, A novel photoanode based on thorium oxide (ThO2) incorporated with graphitic carbon nitride (g-C3N4) for photoelectrochemical water splitting, Appl. Surf. Sci., 569(2021), art. No. 151043. doi: 10.1016/j.apsusc.2021.151043
      [25]
      A. Akulinkin, K. Bolgaru, and A. Reger, Facile synthesis of porous g-C3N4/β-SiAlON material with visible light photocatalytic activity, Mater. Lett., 305(2021), art. No. 130788. doi: 10.1016/j.matlet.2021.130788
      [26]
      Z. Salmanzadeh-Jamadi, A. Habibi-Yangjeh, S.R. Pouran, X.F. Xu, and C.D. Wang, Facile fabrication of TiO2/Bi5O7Br photocatalysts for visible-light-assisted removal of tetracycline and dye wastewaters, J. Phys. D, 55(2022), No. 16, art. No. 165105. doi: 10.1088/1361-6463/ac48af
      [27]
      B.K. Liu, Y.J. Wu, X.L. Han, J.H. Lv, J.T. Zhang, and H.Z. Shi, Facile synthesis of g-C3N4/amine-functionalized MIL-101(Fe) composites with efficient photocatalytic activities under visible light irradiation, J. Mater. Sci., 29(2018), No. 20, p. 17591.
      [28]
      F.P. Zhao, Y.P. Liu, S.B. Hammouda, et al., MIL-101(Fe)/g-C3N4 for enhanced visible-light-driven photocatalysis toward simultaneous reduction of Cr(VI) and oxidation of bisphenol A in aqueous media, Appl. Catal. B, 272(2020), art. No. 119033. doi: 10.1016/j.apcatb.2020.119033
      [29]
      X.Y. Dao, J.H. Guo, Y.P. Wei, F. Guo, Y. Liu, and W.Y. Sun, Solvent-free photoreduction of CO2 to CO catalyzed by Fe-MOFs with superior selectivity, Inorg. Chem., 58(2019), No. 13, p. 8517. doi: 10.1021/acs.inorgchem.9b00824
      [30]
      L. Zhang, X. Yue, J. Liu, et al., Facile synthesis of Bi5O7Br/BiOBr 2D/3D heterojunction as efficient visible-light-driven photocatalyst for pharmaceutical organic degradation, Sep. Purif. Technol., 231(2020), art. No. 115917. doi: 10.1016/j.seppur.2019.115917
      [31]
      M. Mousavi and A. Habibi-Yangjeh, Magnetically recoverable highly efficient visible-light-active g-C3N4/Fe3O4/Ag2WO4/AgBr nanocomposites for photocatalytic degradations of environmental pollutants, Adv. Powder Technol., 29(2018), No. 1, p. 94. doi: 10.1016/j.apt.2017.10.016
      [32]
      J. Zhang, W. Zhang, L. Yue, et al., Thiophene insertion and lanthanum molybdate modification of g-C3N4 for enhanced visible-light-driven photoactivity in tetracycline degradation, Appl. Surf. Sci., 592(2022), art. No. 153337. doi: 10.1016/j.apsusc.2022.153337
      [33]
      X. Zhou, C. Shao, X. Li, X. Wang, X. Guo, and Y. Liu, Three dimensional hierarchical heterostructures of g-C3N4 nanosheets/TiO2 nanofibers: Controllable growth via gas–solid reaction and enhanced photocatalytic activity under visible light, J. Hazard. Mater., 344(2018), p. 113. doi: 10.1016/j.jhazmat.2017.10.006
      [34]
      Y.N. Zhu, S.L. Yang, C.Y. Cao, W.G. Song, and L.J. Wan, Controllable synthesis of carbon encapsulated iron phosphide nanoparticles for the chemoselective hydrogenation of aromatic nitroarenes to anilines, Inorg. Chem. Front., 5(2018), No. 5, p. 1094. doi: 10.1039/C7QI00803A
      [35]
      P.S. Li, Z.A. Zhou, Q. Wang, et al., Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: Enhanced performance by oxygen vacancies, J. Am. Chem. Soc., 142(2020), No. 28, p. 12430. doi: 10.1021/jacs.0c05097
      [36]
      Z. Chen, F. Guo, H. Sun, Y. Shi, and W. Shi, Well-designed three-dimensional hierarchical hollow tubular g-C3N4/ZnIn2S4 nanosheets heterostructure for achieving efficient visible-light photocatalytic hydrogen evolution, J. Colloid Interface Sci., 607(2022), p. 1391. doi: 10.1016/j.jcis.2021.09.095
      [37]
      W. Liu, Y. Li, F. Liu, W. Jiang, D. Zhang, and J. Liang, Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: Mechanisms, degradation pathway and DFT calculation, Water Res., 151(2019), p. 8. doi: 10.1016/j.watres.2018.11.084
      [38]
      K. Zhao, Z.S. Zhang, Y.L. Feng, S.L. Lin, H. Li, and X. Gao, Surface oxygen vacancy modified Bi2MoO6/MIL-88B(Fe) heterostructure with enhanced spatial charge separation at the bulk & interface, Appl. Catal. B, 268(2020), art. No. 118740. doi: 10.1016/j.apcatb.2020.118740
      [39]
      Q. Su, J. Li, H. Yuan, et al., Visible-light-driven photocatalytic degradation of ofloxacin by g-C3N4/NH2-MIL-88B(Fe) heterostructure: Mechanisms, DFT calculation, degradation pathway and toxicity evolution, Chem. Eng. J., 427(2022), art. No. 131594. doi: 10.1016/j.cej.2021.131594
      [40]
      C.P. Bai, J.C. Bi, J.B. Wu, et al., Fabrication of noble-metal-free g-C3N4-MIL-53(Fe) composite for enhanced photocatalytic H2-generation performance, Appl. Organomet. Chem., 32(2018), No. 12, art. No. e4597. doi: 10.1002/aoc.4597
      [41]
      L. Wang, W. Zhang, Y. Su, Z. Liu, and C. Du, Halloysite derived 1D mesoporous tubular g-C3N4: Synergy of template effect and associated carbon for boosting photocatalytic performance toward tetracycline removal, Appl. Clay Sci., 213(2021), art. No. 106238. doi: 10.1016/j.clay.2021.106238
      [42]
      Y.J. Wang, Q.Y. Wang, H. Zhang, et al., CTAB-assisted solvothermal construction of hierarchical Bi2MoO6/Bi5O7Br with improved photocatalytic performances, Sep. Purif. Technol., 242(2020), art. No. 116775. doi: 10.1016/j.seppur.2020.116775
      [43]
      R. Tang, S.J. Zhou, H. Li, R. Chen, L.Y. Zhang, and L.W. Yin, Halogen bonding induced aqueously stable CsPbBr3@MOFs-derived Co3O4/N-doped-C heterostructure for high-performance photoelectrochemical water oxidation, Appl. Catal. B, 265(2020), art. No. 118583. doi: 10.1016/j.apcatb.2019.118583
      [44]
      A.G. Ramu, S. Salla, S. Chandrasekaran, et al., A facile synthesis of metal ferrites and their catalytic removal of toxic nitro-organic pollutants, Environ. Pollut., 270(2021), art. No. 116063. doi: 10.1016/j.envpol.2020.116063
      [45]
      Y. Liu, H.G. Guo, Y.L. Zhang, et al., Heterogeneous activation of persulfate for Rhodamine B degradation with 3D flower sphere-like BiOI/Fe3O4 microspheres under visible light irradiation, Sep. Purif. Technol., 192(2018), p. 88. doi: 10.1016/j.seppur.2017.09.045
      [46]
      X.C. Yu, Z.Y. Song, X.Q. Dong, et al., Enhanced photocatalytic activity of rare earth (Yb, Nd and Ce)-doped g-C3N4 nanosheets for the degradation of organic dyes under visible light, J. Mater. Sci., 33(2022), No. 16, p. 13271.
      [47]
      F. Xie, Q. Xi, H. Li, et al., Two-dimensional/two-dimensional heterojunction-induced accelerated charge transfer for photocatalytic hydrogen evolution over Bi5O7Br/Ti3C2: Electronic directional transport, J. Colloid Interface Sci., 617(2022), p. 53. doi: 10.1016/j.jcis.2022.02.126
      [48]
      P.F. Xia, S.W. Cao, B.C. Zhu, et al., Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria, Angew. Chem. Int. Ed., 59(2020), No. 13, p. 5218. doi: 10.1002/anie.201916012
      [49]
      F. He, B.C. Zhu, B. Cheng, J.G. Yu, W. Ho, and W. Macyk, 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity, Appl. Catal. B, 272(2020), art. No. 119006. doi: 10.1016/j.apcatb.2020.119006

    Catalog


    • /

      返回文章
      返回