Cite this article as:

Zhibin Chen, Kang Huang, Bowei Zhang, Jiuyang Xia, Junsheng Wu, Zequn Zhang, and Yizhong Huang, Corrosion engineering on AlCoCrFeNi high-entropy alloys toward highly efficient electrocatalysts for the oxygen evolution of alkaline seawater, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp.1922-1932. https://dx.doi.org/10.1007/s12613-023-2624-7
Zhibin Chen, Kang Huang, Bowei Zhang, Jiuyang Xia, Junsheng Wu, Zequn Zhang, and Yizhong Huang, Corrosion engineering on AlCoCrFeNi high-entropy alloys toward highly efficient electrocatalysts for the oxygen evolution of alkaline seawater, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp.1922-1932. https://dx.doi.org/10.1007/s12613-023-2624-7
引用本文 PDF XML SpringerLink

AlCoCrFeNi高熵合金的腐蚀工程制备高效电催化剂用于碱性海水析氧

摘要: 海水裂解是产生可再生和可持续氢能的一种前瞻性方法。目前,复杂的制备工艺和较差的可重复性被认为是阻碍大规模生产和应用电催化剂的不可逾越的障碍。腐蚀工程可避免使用复杂的仪器,是一种降低成本的有趣策略,并为具有催化性能的电极提供了巨大的潜力。本文通过一步腐蚀的方法,提出了一种在AlCoCrFeNi高熵合金上均匀装饰的由五元AlCoCrFeNi层状双氢氧化物(AlCoCrFeNi-LDHs)组成的阳极,该阳极可直接用作促进碱性海水中析氧反应(OER)的活性催化剂。系统地研究出合适的工艺参数:温度150°C,3 M NaOH水热溶液,水热8 h。该条件下制备的AlCoCrFeNi-LDHs中Ni与Al为主要构成元素。电化学测试结果表明,在碱性海水(0.5 M NaCl + 1 M KOH)介质中,AlCoCrFeNi-LDHs达到10和100 mA·cm−2的电流密度时仅分别需要272.3与343.4 mV的过电位,相比于AlCoCrFeNi高熵合金(349.8与455.4 mV),过电位分别降低了77.5与112 mV。同时,AlCoCrFeNi-LDHs具有较低的Tafel斜率(48.87 mV·dec−1)、相对较大的电化学活性表面积、较好的电荷转移动力学,并且在10 h的稳定性测试中展现出优异的稳定性。研究发现,AlCoCrFeNi-LDHs表面生长的LDHs在工作72 h后仍保持片状结构,过程中没有新物质生成,稳定性测试前后各元素的化学状态没有产生较大改变,然而,在电流的持续作用下,构成高效活性位点的元素发生溶解,因此导致LDHs的粗糙表面,其电催化性能衰退。

 

Corrosion engineering on AlCoCrFeNi high-entropy alloys toward highly efficient electrocatalysts for the oxygen evolution of alkaline seawater

Abstract: Seawater splitting is a prospective approach to yield renewable and sustainable hydrogen energy. Complex preparation processes and poor repeatability are currently considered to be an insuperable impediment to the promotion of the large-scale production and application of electrocatalysts. Avoiding the use of intricate instruments, corrosion engineering is an intriguing strategy to reduce the cost and presents considerable potential for electrodes with catalytic performance. An anode comprising quinary AlCoCrFeNi layered double hydroxides uniformly decorated on an AlCoCrFeNi high-entropy alloy is proposed in this paper via a one-step corrosion engineering method, which directly serves as a remarkably active catalyst for boosting the oxygen evolution reaction (OER) in alkaline seawater. Notably, the best-performing catalyst exhibited oxygen evolution reaction activity with overpotential values of 272.3 and 332 mV to achieve the current densities of 10 and 100 mA·cm−2, respectively. The failure mechanism of the obtained catalyst was identified for advancing the development of multicomponent catalysts.

 

/

返回文章
返回