留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 9
Sep.  2023

图(8)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  620
  • HTML全文浏览量:  185
  • PDF下载量:  38
  • 被引次数: 0
Li Zeng, Zhong Zheng, Xiaoyuan Lian, Kai Zhang, Mingmei Zhu, Kaitian Zhang, Chaoyue Xu,  and Fei Wang, Intelligent optimization method for the dynamic scheduling of hot metal ladles of one-ladle technology on ironmaking and steelmaking interface in steel plants, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1729-1739. https://doi.org/10.1007/s12613-023-2625-6
Cite this article as:
Li Zeng, Zhong Zheng, Xiaoyuan Lian, Kai Zhang, Mingmei Zhu, Kaitian Zhang, Chaoyue Xu,  and Fei Wang, Intelligent optimization method for the dynamic scheduling of hot metal ladles of one-ladle technology on ironmaking and steelmaking interface in steel plants, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1729-1739. https://doi.org/10.1007/s12613-023-2625-6
引用本文 PDF XML SpringerLink
研究论文

铁钢界面 “一罐制” 运行下转炉炼钢厂铁水罐动态调度的智能优化方法


  • 通讯作者:

    郑忠    E-mail: zhengzh@cqu.edu.cn

  • 高炉–转炉的“一罐制”运行模式对铁钢界面技术提出更高要求,炼钢厂内铁水罐的运行调度决定了界面的整体运行效率。考虑实际生产环境的强不确定性,提出了基于数据驱动的铁水罐动态调度方法。本文构建了以最小化铁水罐周转时间为优化目标的铁水罐动态调度模型,设计了面向动态扰动的影响程度及范围的3类动态调度策略。通过对关键数据的跟踪,实现工业场景的智能感知与扰动自主识别、动态调度策略的自适应配置以及调度方案的实时调整。以某钢厂系统运行期间某天24 h生产数据进行的案例测试表明:该方法及系统可以有效降低铁水罐运行时间波动,提高铁钢界面生产节奏的稳定性,且数据驱动下的动态调度策略可行有效。
  • Research Article

    Intelligent optimization method for the dynamic scheduling of hot metal ladles of one-ladle technology on ironmaking and steelmaking interface in steel plants

    + Author Affiliations
    • The one-ladle technology requires an efficient ironmaking and steelmaking interface. The scheduling of the hot metal ladle in the steel plant determines the overall operational efficiency of the interface. Considering the strong uncertainties of real-world production environments, this work studies the dynamic scheduling problem of hot metal ladles and develops a data-driven three-layer approach to solve this problem. A dynamic scheduling optimization model of the hot metal ladle operation with a minimum average turnover time as the optimization objective is also constructed. Furthermore, the intelligent perception of industrial scenes and autonomous identification of disturbances, adaptive configuration of dynamic scheduling strategies, and real-time adjustment of schedules can be realized. The upper layer generates a demand-oriented prescheduling scheme for hot metal ladles. The middle layer adaptively adjusts this scheme to obtain an executable schedule according to the actual supply–demand relationship. In the lower layer, three types of dynamic scheduling strategies are designed according to the characteristics of the dynamic disturbance in the model: real-time flexible fine-tuning, local machine adjustment, and global rescheduling. Case test using 24 h production data on a certain day during the system operation of a steel plant shows that the method and system can effectively reduce the fluctuation and operation time of the hot metal ladle and improve the stability of the ironmaking and steelmaking interface production rhythm. The data-driven dynamic scheduling strategy is feasible and effective, and the proposed method can improve the operation efficiency of hot metal ladles.
    • loading
    • [1]
      R.Y. Yin, Metallurgical Process Engineering, Metallurgical Industry Press, Beijing, 2011.
      [2]
      R.Y. Yin, A discussion on “smart” steel plant - View from physical system side, Iron Steel, 52(2017), No. 6, p. 1.
      [3]
      R.Y. Yin, Review on the study of metallurgical process engineering, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1253. doi: 10.1007/s12613-020-2220-z
      [4]
      W.G. Han, X.P. Li, Y.X. Shi, W.D. Wang, and C.X. Zhang, Online ladle quantity of “one-open-ladle-from-BF-to-BOF” route by using queuing theory, Iron Steel, 48(2013), No. 5, p. 21. doi: 10.13228/j.boyuan.issn0449-749x.2013.05.015
      [5]
      Z.X. Gu, A.J. Xu, D.F. He, and K. Feng, A calculation model for determining number of hot metal ladle based on queuing theory with constraints of system capacity, J. Chongqing Univ., 40(2017), No. 8, p. 70. doi: 10.11835/j.issn.1000-582X.2017.08.009
      [6]
      J.J. Cui, S.Z. Luo, F. Liu, and X.H. Xu, Design and realization of the iron melt transport simulating system, J. Syst. Simul., 15(2003), No. 12, p. 1799. doi: 10.16182/j.cnki.joss.2003.12.037
      [7]
      J. Qiu, N.Y. Tian, A.J. Xu, et al., Development of transport scheduling application software for iron-steel interface at baosteel, Iron Steel, 38(2003), No. 5, p. 73. doi: 10.13228/j.boyuan.issn0449-749x.2003.05.020
      [8]
      H. Huang, T.Y. Chai, B.L. Zheng, Z.Y. Li, W. Xu, and W. Zhou, Design and development of molten iron scheduling simulation system, J. Syst. Simul., 24(2012), No. 6, p. 1192.
      [9]
      F. Wang, Y. Liu, A.J. Xu, D.F. He, and H.B. Wang, Modeling and calculation for the molten iron preparation problem based on production schedulling of steelmaking area, [in] Proceedings of the 2nd International Conference on Modeling and Simulation, Liverpool, 2009.
      [10]
      X.P. Li, W.G. Han, C.X. Zhang, J.H. Liu, Z.J. Wei, and C.Y. Wu, Optimization of interface material flow operation of BF–BOF section, J. Eng. Stud., 9(2017), No. 1, p. 53. doi: 10.3724/SP.J.1224.2017.00053
      [11]
      S.W. Lu and X.C. Luo, Design of multi-scenario simulation of molten iron logistics system with cranes and cross-train AGVs, J. Syst. Simul., 29(2017), No. 10
      [12]
      X.Y. Wang, A.J. Xu, D.F. He, and Z.X. Gu, Simulation optimization of logistics for iron-making plant based on plant simulation, Res. Iron Steel, 45(2017), No. 1, p. 17.
      [13]
      M. Pinedo and K. Hadavi, Scheduling: theory, algorithms, and systems, [in] Proceedings of the 20th Annual Meeting on Operations Research, Berlin, Heidelberg, 1992, p. 35.
      [14]
      W.H. Gui, C.H. Wang, Y.F. Xie, S. Song, Q.F. Meng, and J.L. Ding, The necessary way to realize great-leap-forward development of process industries, Bull. Nat. Nat. Sci. Found. China, 5(2015), p. 337.
      [15]
      Z.Y. Zhao, S.X. Liu, M.C. Zhou, and A. Abusorrah, Dual-objective mixed integer linear program and memetic algorithm for an industrial group scheduling problem, IEEE/CAA J. Autom. Sin., 8(2021), No. 6, p. 1199. doi: 10.1109/JAS.2020.1003539
      [16]
      J.P. Yang, Q. Liu, W.D. Guo, and J.G. Zhang, Quantitative evaluation of multi-process collaborative operation in steelmaking-continuous casting sections, Int. J. Miner. Metall. Mater., 28(2021), 8, p. 1353. doi: 10.1007/s12613-020-2227-5
      [17]
      Z.J. Xu, Z. Zheng, and X.Q. Gao, Operation optimization of the steel manufacturing process: A brief review, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1274. doi: 10.1007/s12613-021-2273-7
      [18]
      S.P. Yu and Q.K. Pan, A rescheduling method for operation time delay disturbance in steelmaking and continuous casting production process, J. Iron Steel Res. Int., 19(2012), No. 12, p. 33. doi: 10.1016/S1006-706X(13)60029-1
      [19]
      S.P. Yu, T.Y. Chai, and Y. Tang, An effective heuristic rescheduling method for steelmaking and continuous casting production process with multirefining modes, IEEE Trans. Syst. Man Cybern:Syst., 46(2016), No. 12, p. 1675. doi: 10.1109/TSMC.2016.2604081
      [20]
      S.P. Yu, A prediction method for abnormal condition of scheduling plan with operation time delay in steelmaking and continuous casting production process, ISIJ Int., 53(2013), No. 6, p. 1028. doi: 10.2355/isijinternational.53.1028
      [21]
      L.X. Tang, Y. Zhao, and J.Y. Liu, An improved differential evolution algorithm for practical dynamic scheduling in steelmaking-continuous casting production, IEEE Trans. Evol. Comput., 18(2014), No. 2, art. No. 209. doi: 10.1109/TEVC.2013.2250977
      [22]
      J.H. Hao, M. Liu, S.L. Jiang, and C. Wu, A soft-decision based two-layered scheduling approach for uncertain steelmaking-continuous casting process, Eur. J. Oper. Res., 244(2015), No. 3, p. 966. doi: 10.1016/j.ejor.2015.02.026
      [23]
      S.L. Jiang, M. Liu, J.H. Lin, and H.X. Zhong, A prediction-based online soft scheduling algorithm for the real-world steelmaking-continuous casting production, Knowl. Based Syst., 111(2016), p. 159. doi: 10.1016/j.knosys.2016.08.010
      [24]
      J.Y. Long, Z. Zheng, and X.Q. Gao. Dynamic scheduling in steelmaking-continuous casting production for continuous caster breakdown, Int. J. Prod. Res., 55(2017), No. 11, p. 3197. doi: 10.1080/00207543.2016.1268277
      [25]
      K.K. Peng, Q.K. Pan, L. Gao, B. Zhang, and X.F. Pang, An improved artificial bee colony algorithm for real-world hybrid flowshop rescheduling in steelmaking–refining–continuous casting process, Comput. Ind. Eng., 122(2018), p. 235. doi: 10.1016/j.cie.2018.05.056

    Catalog


    • /

      返回文章
      返回