留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 10
Oct.  2023

图(5)

数据统计

分享

计量
  • 文章访问数:  730
  • HTML全文浏览量:  252
  • PDF下载量:  50
  • 被引次数: 0
Xiucai Wang, Naijian Hu, Jia Yang, Jianwen Chen, Xinmei Yu, Wenbo Zhu, Chaochao Zhao, Ting Wang,  and Min Chen, High-performance triboelectric nanogenerator based on ZrB2/polydimethylsiloxane for metal corrosion protection, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1957-1964. https://doi.org/10.1007/s12613-023-2626-5
Cite this article as:
Xiucai Wang, Naijian Hu, Jia Yang, Jianwen Chen, Xinmei Yu, Wenbo Zhu, Chaochao Zhao, Ting Wang,  and Min Chen, High-performance triboelectric nanogenerator based on ZrB2/polydimethylsiloxane for metal corrosion protection, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1957-1964. https://doi.org/10.1007/s12613-023-2626-5
引用本文 PDF XML SpringerLink
研究论文

金属防腐蚀的ZrB2/PDMS摩擦纳米发电机



  • 通讯作者:

    王修才    E-mail: wxc5168@163.com

    陈旻    E-mail: minchen1981@126.com

文章亮点

  • (1) 设计出了一种基于ZrB2/PDMS的高性能柔性TENG。
  • (2) TENG的开路电压和短路电流分别达到264 V 和 22.9 μA,功率密度达到了6 W/m2
  • (3) 基于TENG的自供电防腐系统的开路电位和塔菲尔曲线表明该系统对碳钢具有优异的防腐蚀效果。
  • 金属腐蚀每年造成数十亿美元的经济损失。因此,寻找一种高效且成本低廉的方法解决这一问题成为当前研究的热点。作为一种智能的新型能量收集装置,摩擦电纳米发电机(TENGs)能够将几乎所有的机械能转化为电能,在金属防腐、阴极保护等方面具有广阔的前景。在本工作中,我们合成了具有高介电常数的ZrB2纳米颗粒,通过将其与PDMS相混合后,制成了具有高性能的柔性ZrB2/PDMS薄膜。利用ZrB2/PDMS薄膜设计了能够有效收集的机械能的摩擦纳米发电机(ZB–TENGs)。结果表明,在3.5 Hz和10 N的条件下,开路电压和短路电流分别达到264 V和22.9 μA,ZB–TENGs的功率密度达到6 W·m−2,并成功地为商用计算器供电40秒。在手动轻拍的情况下,可以同时点亮108个蓝色LED灯。此外,将整流电路与ZB–TENGs集成,设计了一种自供电防腐系统,通过对于开路电位和塔菲尔曲线的测试表明该系统对碳钢具有良好的防腐效果。这项研究表明了该系统在金属文物、海洋工程、工业等领域具有广阔的应用前景。
  • Research Article

    High-performance triboelectric nanogenerator based on ZrB2/polydimethylsiloxane for metal corrosion protection

    + Author Affiliations
    • Metal corrosion causes billions of dollars of economic losses yearly. As a smart and new energy-harvesting device, triboelectric nanogenerators (TENGs) can convert almost all mechanical energy into electricity, which leads to great prospects in metal corrosion prevention and cathodic protection. In this work, flexible TENGs were designed to use the energy harvested by flexible polydimethylsiloxane (PDMS) films with ZrB2 nanoparticles and effectively improve the dielectric constant by incorporating ZrB2. The open-circuit voltage and short-circuit current were 264 V and 22.9 µA, respectively, and the power density of the TENGs reached 6 W·m−2. Furthermore, a self-powered anti-corrosion system was designed by the rectifier circuit integrated with TENGs, and the open-circuit potential (OCP) and Tafel curves showed that the system had an excellent anti-corrosion effect on carbon steel. Thus, the system has broad application prospects in fields such as metal cultural relics, ocean engineering, and industry.
    • loading
    • Supplementary Information-10.1007s12613-023-2626-5.docx
    • [1]
      R.W. Sanders, G.L. Crettol, J.D. Brown, et al., Teaching electrochemistry in the general chemistry laboratory through corrosion exercises, J. Chem. Educ., 95(2018), No. 5, p. 842. doi: 10.1021/acs.jchemed.7b00416
      [2]
      M.S. Banjanin, M.S. Savić, and Z.M.Stojković, Lightning protection of overhead transmission lines using external ground wires, Electr. Power Syst. Res., 127(2015), p. 206. doi: 10.1016/j.jpgr.2015.06.001
      [3]
      H. Wang, M.Y. Shi, K. Zhu, et al., High performance triboelectric nanogenerators with aligned carbon nanotubes, Nanoscale, 8(2016), No. 43, p. 18489. doi: 10.1039/C6NR06319E
      [4]
      H.Y. Guo, X.M. He, J.W. Zhong, et al., A nanogenerator for harvesting airflow energy and light energy, J. Mater. Chem. A, 2(2014), No. 7, p. 2079. doi: 10.1039/C3TA14421F
      [5]
      J. Chun, J.W. Kim, W.S. Jung, et al., Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments, Energy Environ. Sci., 8(2015), No. 10, p. 3006. doi: 10.1039/C5EE01705J
      [6]
      F. Patolsky, B.P. Timko, G.H. Yu, et al., Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays, Science, 313(2006), No. 5790, p. 1100. doi: 10.1126/science.1128640
      [7]
      S. Wang, L. Lin and Z.L. Wang, Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics, Nano Lett., 12(2012), No. 12, p. 6339. doi: 10.1021/nl303573d
      [8]
      L.B. Huang, G.X. Bai, M.C. Wong, Z.B. Yang, W. Xu, and J.H. Hao, Magnetic-assisted noncontact triboelectric nanogenerator converting mechanical energy into electricity and light emissions, Adv. Mater., 28(2016), No. 14, p. 2744. doi: 10.1002/adma.201505839
      [9]
      Y.Q. Wang, X. Yu, M.F. Yin, et al., Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy, Nano Energy, 82(2021), art. No. 105740. doi: 10.1016/j.nanoen.2020.105740
      [10]
      Y. Wang, J.Y. Wang, X. Xiao, et al., Multi-functional wind barrier based on triboelectric nanogenerator for power generation, self-powered wind speed sensing and highly efficient windshield, Nano Energy, 73(2020), art. No. 104736. doi: 10.1016/j.nanoen.2020.104736
      [11]
      H.B. Lin, M.H. He, Q.S. Jing, et al., Angle-shaped triboelectric nanogenerator for harvesting environmental wind energy, Nano Energy, 56(2019), p. 269. doi: 10.1016/j.nanoen.2018.11.037
      [12]
      L.B. Huang, W. Xu, G.X. Bai, M.C. Wong, Z.B. Yang, and J.H. Hao, Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator, Nano Energy, 30(2016), p. 36. doi: 10.1016/j.nanoen.2016.09.032
      [13]
      I.W. Tcho, W.G. Kim, J.K. Kim, et al., A flutter-driven triboelectric nanogenerator for harvesting energy of gentle breezes with a rear-fixed fluttering film, Nano Energy, 98(2022), art. No. 107197. doi: 10.1016/j.nanoen.2022.107197
      [14]
      S.C. Liu, X. Liu, G.L. Zhou, et al., A high-efficiency bioinspired photoelectric-electromechanical integrated nanogenerator, Nat. Commun., 11(2020), No. 1, art. No. 6158. doi: 10.1038/s41467-020-19987-0
      [15]
      Z.X. Zhang and J. Cai, High output triboelectric nanogenerator based on PTFE and cotton for energy harvester and human motion sensor, Curr. Appl. Phys., 22(2021), p. 1. doi: 10.1016/j.cap.2020.11.001
      [16]
      K.Q. Xia, Z.Y. Zhu, H.Z. Zhang, C.L. Du, Z.W. Xu, and R.J. Wang, Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion, Nano Energy, 50(2018), p. 571. doi: 10.1016/j.nanoen.2018.06.019
      [17]
      Z.L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors-Principles, problems and perspectives, Faraday Discuss., 176(2014), p. 447. doi: 10.1039/C4FD00159A
      [18]
      X. Zhao, Z. Zhang, L.X. Xu, et al., Fingerprint-inspired electronic skin based on triboelectric nanogenerator for fine texture recognition, Nano Energy, 85(2021), art. No. 106001. doi: 10.1016/j.nanoen.2021.106001
      [19]
      H.T. Chen, Y. Song, X.L. Cheng, and H.X. Zhang, Self-powered electronic skin based on the triboelectric generator, Nano Energy, 56(2019), p. 252. doi: 10.1016/j.nanoen.2018.11.061
      [20]
      P.C. Zhu, B.S. Zhang, H.Y. Wang, et al., 3D printed triboelectric nanogenerator as self-powered human-machine interactive sensor for breathing-based language expression, Nano Res., 15(2022), No. 8, p. 7460. doi: 10.1007/s12274-022-4339-x
      [21]
      H. Zhou, W. Huang, Z. Xiao, et al., Deep-learning-assisted noncontact gesture-recognition system for touchless human–machine interfaces, Adv. Funct. Mater., 32(2022), No. 49, art. No. 2208271. doi: 10.1002/adfm.202208271
      [22]
      M. Zhang, T. Gao, J.S. Wang, et al., A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application, Nano Energy, 13(2015), p. 298. doi: 10.1016/j.nanoen.2015.02.034
      [23]
      F.R. Fan, W. Tang, and Z.L. Wang, Flexible nanogenerators for energy harvesting and self-powered electronics, Adv. Mater., 28(2016), No. 22, p. 4283. doi: 10.1002/adma.201504299
      [24]
      X.L. Yue, Y. Xi, C.G. Hu, et al., Enhanced output-power of nanogenerator by modifying PDMS film with lateral ZnO nanotubes and Ag nanowires, RSC Adv., 5(2015), No. 41, p. 32566. doi: 10.1039/C5RA02098K
      [25]
      S. Jang and J.H. Oh, Rapid fabrication of microporous BaTiO3/PDMS nanocomposites for triboelectric nanogenerators through one-step microwave irradiation, Sci. Rep., 8(2018), art. No. 14287. doi: 10.1038/s41598-018-32609-6
      [26]
      H.G. Menge, J.O. Kim, and Y.T. Park, Enhanced triboelectric performance of modified PDMS nanocomposite multilayered nanogenerators, Materials, 13(2020), No. 18, art. No. 4156. doi: 10.3390/ma13184156
      [27]
      D. Tantraviwat, M. Ngamyingyoud, W. Sripumkhai, P. Pattamang, G. Rujijanagul, and B. Inceesungvorn, Tuning the dielectric constant and surface engineering of a BaTiO3/porous PDMS composite film for enhanced triboelectric nanogenerator output performance, ACS Omega, 6(2021), No. 44, p. 29765. doi: 10.1021/acsomega.1c04222
      [28]
      S. Feng, H.L. Zhang, D.L. He, et al., Synergistic effects of BaTiO3/multiwall carbon nanotube as fillers on the electrical performance of triboelectric nanogenerator based on polydimethylsiloxane composite films, Energy Technol., 7(2019), No. 6, art. No. 1900101. doi: 10.1002/ente.201900101
      [29]
      D. Ali, B. Yu, X.C. Duan, H. Yu, and M.F. Zhu, Enhancement of output performance through post-poling technique on BaTiO3/PDMS-based triboelectric nanogenerator, Nanotechnology, 28(2017), No. 7, art. No. 075203. doi: 10.1088/1361-6528/aa52b7
      [30]
      J.E. Chen, H.Y. Guo, X.M. He, et al., Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film, ACS Appl. Mater. Interfaces, 8(2016), No. 1, p. 736. doi: 10.1021/acsami.5b09907
      [31]
      V. Vivekananthan, N.P.M.J. Raj, N.R. Alluri, Y. Purusothaman, A. Chandrasekhar, and S.J. Kim, Substantial improvement on electrical energy harvesting by chemically modified/sandpaper-based surface modification in micro-scale for hybrid nanogenerators, Appl. Surf. Sci., 514(2020), art. No. 145904. doi: 10.1016/j.apsusc.2020.145904
      [32]
      G. Wang, Y. Xi, H.X. Xuan, R.C. Liu, X. Chen, and L. Cheng, Hybrid nanogenerators based on triboelectrification of a dielectric composite made of lead-free ZnSnO3 nanocubes, Nano Energy, 18(2015), p. 28. doi: 10.1016/j.nanoen.2015.09.012
      [33]
      S. Paria, S.K. Si, S.K. Karan, et al., A strategy to develop highly efficient TENGs through the dielectric constant, internal resistance optimization, and surface modification, J. Mater. Chem. A, 7(2019), No. 8, p. 3979. doi: 10.1039/C8TA11229K
      [34]
      M.H. Lai, L. Cheng, Y. Xi, et al., Enhancing the performance of NaNbO3 triboelectric nanogenerators by dielectric modulation and electronegative modification, J. Phys. D, 51(2018), No. 1, art. No. 015303. doi: 10.1088/1361-6463/aa9a6c
      [35]
      J.H. Jung, C.Y. Chen, B.K. Yun, et al., Lead-free KNbO3 ferroelectric nanorod based flexible nanogenerators and capacitors, Nanotechnology, 23(2012), No. 37, art. No. 375401. doi: 10.1088/0957-4484/23/37/375401
      [36]
      J.J. Jiao, Y.T. Su, C.Y. Wang, et al., Novel elexible friction layer constructed from ZnO in situ grown on ZnSnO3 nanocubes toward significantly enhancing output performances of a triboelectric nanogenerator, ACS Appl. Energy Mater., 6(2023), No. 3, p. 1283. doi: 10.1021/acsaem.2c03027
      [37]
      L. Pan, J.H. Yin, J.L. Li, et al., Effect of ZrB2 nanopellets on microstructure, dielectric, mechanical and thermal stability of polyimide, High Perform. Polym., 33(2021), No. 7, p. 797. doi: 10.1177/0954008321994175
      [38]
      V. Harnchana, H.V. Ngoc, W. He, et al., Enhanced power output of a triboelectric nanogenerator using poly(dimethylsiloxane) modified with graphene oxide and sodium dodecyl sulfate, ACS Appl. Mater. Interfaces, 10(2018), No. 30, p. 25263. doi: 10.1021/acsami.8b02495
      [39]
      S.M. Niu, S.H. Wang, L. Lin, et al., Theoretical study of contact-mode triboelectric nanogenerators as an effective power source, Energy Environ. Sci., 6(2013), No. 12, p. 3576. doi: 10.1039/c3ee42571a

    Catalog


    • /

      返回文章
      返回