Cite this article as:

Chuanchang Li, Xinke Peng, Jianjun He, and Jian Chen, Modified sepiolite stabilized stearic acid as a form-stable phase change material for thermal energy storage, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp.1835-1845. https://dx.doi.org/10.1007/s12613-023-2627-4
Chuanchang Li, Xinke Peng, Jianjun He, and Jian Chen, Modified sepiolite stabilized stearic acid as a form-stable phase change material for thermal energy storage, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp.1835-1845. https://dx.doi.org/10.1007/s12613-023-2627-4
引用本文 PDF XML SpringerLink

用于热能储存的硬脂酸/海泡石基定型复合相变储热材料

摘要: 可再生能源在转化和使用过程中,存在时间和空间上的供需不匹配。基于相变材料的储热技术可以很好地解决供需平衡问题,为可再生能源的高效稳定供能提供重要支撑。然而,相变材料的泄漏问题很大程度上阻碍了其实际应用。采用矿物负载相变材料制备定型复合相变储热材料是解决相变材料泄漏问题和改善热性能的一种有效手段。本文以海泡石(Sepiolite, ST)为主要原料,充分利用其矿物结构和储热特征,构建系列海泡石基定型复合相变储热材料。采用微波辅助盐酸改性海泡石,研究微波辐照下不同盐酸浓度改性对提升海泡石负载相变材料能力的程度。选取改性海泡石为支撑基体,采用真空浸渍法,制备了改性海泡石基复合相变储热材料。对比不同盐酸浓度处理后改性海泡石的孔结构数据,证明了0.5 mol·L−1盐酸处理的样品具有高负载能力。研究结果表明,当盐酸浓度为0.5 mol·L−1时,改性海泡石(STm0.5)的比表面积为139.11 m2·g−1,累计孔容为0.341 m3·g−1,复合材料(SA/STm0.5)的装载量为82.63%,SA结晶度为98.99%,其熔融和冷却潜热值达152.30 J·g−1和148.90 J·g−1。微波辅助酸浸有效改善了海泡石基复合相变储热材料的结晶度,实现了对海泡石基复合相变储热材料的热性能调控,获得了具有高负载能力的改性海泡石基体和高相变潜热值的改性海泡石基复合相变储热材料。

 

Modified sepiolite stabilized stearic acid as a form-stable phase change material for thermal energy storage

Abstract: Sepiolite (ST) was used as a supporting matrix in compiste phase change materials (PCMs) due to its unique microstructure, good thermal stability, and other raw material advantages. In this paper, microwave acid treatment were innovatively used for the modification of sepiolite. The modified sepiolite (STm) obtained in different hydrochloric acid concentrations (0.25, 0.5, 0.75, and 1.0 mol·L−1) was added to stearic acid (SA) via vacuum impregnation method. The thermophysical properties of the composites were changed by varying the hydrochloric acid concentration. The SA-STm0.5 obtained by microwave acid treatment at 0.5 mol·L−1 hydrochloric acid concentration showed a higher loading capacity (82.63%) than other composites according to the differential scanning calorimeter (DSC) analysis. The melting and freezing enthalpies of SA-STm0.5 were of 152.30 and 148.90 J·g−1, respectively. The thermal conductivity of SA-STm0.5 was as high as 1.52 times that of pure SA. In addition, the crystal structure, surface morphology, and microporous structure of STm were studied, and the mechanism of SA-STm0.5 performance enhancement was further revealed by Brunauere Emmett Teller (BET) analysis. Leakage experiment showed that SA-STm0.5 had a good morphological stability. These results demostrate that SA-STm0.5 has a potential application in thermal energy storage.

 

/

返回文章
返回